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Abstract

Population monitoring of nesting waterbirds often involves frequent entries into the colony, but alternative methods
such as local remotely sensed thermal imaging may help reduce disturbance while providing a cost-effective way to
survey breeding populations. Such an approach can have high initial costs, however, which may have reduced the
number of studies investigating functionality of paired thermal infrared camera and small unmanned aerial systems.
Here, we take the first step of exploring the ability of two thermal infrared cameras to detect an avian chick under
varying vegetative cover and distances, preceding field-mounting applications on a small unmanned aerial system. We
created seven ‘‘bioboxes’’ to simulate a range of natural vegetation types and densities for a globally important
colonial ground-nesting waterbird species, the common tern Sterna hirundo. We placed a juvenile chicken Gallus gallus
(surrogate for the locally endangered common tern) in each box, and we tested two market-accessible infrared
cameras (produced by FLIR Systems and Infrared Cameras, Inc.) at five elevations using a stationary boom (maximum
height¼12 m). We applied computer-based digital thresholding to collected images, identifying pixels meeting one of
seven threshold values. The chick was visible from at least one threshold value in 19 and 31 of 35 processed by the FLIR
Systems and Infrared Cameras, respectively. Percentage of the chick identified across thresholds was generally highest
at lower threshold values and elevations and decreased as elevation and threshold increased; however, the relative
importance of each variable changed dramatically across bioboxes and camera types. Ability to detect a chick from
processed images generally decreased with increasing elevation, and although we made no quantitative comparisons
among boxes, detectability appeared greatest in images from both cameras when little or no vegetation was present.
Interestingly, no single threshold value was best for all bioboxes. We observed notable differences between cameras
including visual resolution of detected temperature differentials and image processing speed. Results of this controlled
study show promise for the use of thermal infrared systems for detecting cryptic species in vegetation. Future research
should work to combine thermal infrared and visual sensors with small unmanned aerial systems to test applicability in
a mobile field application.
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Introduction

Researchers’ efforts to obtain data regarding adult and
chick abundance, nest counts, or hatching and fledging
success using conventional methods can be difficult,
time consuming, and potentially disruptive for wild birds
(Carney and Sydeman 1999). For example, cryptic
coloration and behavior of many juvenile waterbirds
make detection challenging and may lead to underes-
timation (Steinkamp et al. 2003). Visual surveys or
resighting events using spotting scopes are known to
have an inherent bias as vegetation grows across a
season, making birds more difficult to see, which can
alter results across sites or season (Bibby and Buckland
1987). Similarly, chick or nest searching may be time
intensive, yet prolonged human presence in a colony of
nesting waterbirds is to be avoided given the potential
for disturbance such as adult flush (temporary colony
evacuation leaving eggs or chicks exposed), altering of
foraging behavior, triggering of juveniles to evacuate the
nest, or nest abandonment (Palmer 1941; Erwin 1989;
Rodgers and Smith 1995). Data obtained from reproduc-
tive surveys are necessary for population assessment and
development of management plans for declining species
such as the common tern Sterna hirundo, which is listed
as endangered within the state of Maryland (Maryland
Natural Heritage Program 2016). To help balance the
need for data and potential disturbance caused by
acquiring such data, researchers are continually search-
ing for population survey techniques that are both less
invasive and less costly.

Thermal infrared imaging (TIR) is one method that has
received significant attention in recent years as an option
for surveying wildlife while reducing disturbance relative
to traditional methods. As explained in a review by
McCafferty (2013), TIR has been examined as a means by
which researchers can study cryptic avian species (Locke
et al. 2006; Mills et al. 2011; Andes et al. 2012), nesting
locations and densities (Boonstra et al. 1995; Benshe-
mesh and Emison 1996; Galligan et al. 2003; Kinzel et al.
2006), migration ecology (Betke et al. 2008; Mirzaei et al.
2012), and thermoregulatory behaviors (McCafferty et al.
1998). However, the majority of studies involving TIR
have used handheld devices during ground surveys,
which does not reduce entry into the colony (McCafferty
2013). One potential approach to minimize disturbance
is to affix a TIR camera onto a small unmanned aircraft

system (sUAS) and capture imagery semiremotely.
Because sUAS units weigh less than 25 kg (rule 14 CFR
part 107), they are optimal for transport and deployment
by a single operator. Recent studies by Chabot and Bird
(2012), Chabot et al. (2015), Hodgson et al. (2016), and
Reintsma et al. (2018) successfully used a sUAS to survey
Canada geese Branta canadensis and common terns with
minimal disturbance. Although these studies used a
visual survey system other than TIR and concentrated on
surveying adults, they demonstrate the potential for this
approach. Additionally, pairing sUAS and TIR presents
the opportunity to survey for individuals that are difficult
to detect. For instance, older tern chicks that have left
the nest pose a significantly greater detection challenge
than adults when using traditional approaches because
they are small and often cryptically colored, well
insulated, and may hide under vegetation to obtain
shade and avoid predation (Jenks-Jay 1982).

To our knowledge, the only works that have combined
TIR and sUAS to examine wild birds were for surveying
mid-size or large species in open habitat (Hutt 2011;
Owen 2011; Hanson et al. 2014). The paucity of research
on the practicality of this approach for smaller species is
likely driven by the high initial costs. TIR units tested in
this study cost between US $10,000 and $12,000, and the
sUAS (with peripheral equipment) required to carry them
had a similar price tag. Additionally, the use and
exportation of TIR sensors may be subject to more
stringent governmental regulations because of their use
in civil and military applications (Linchant et al. 2015).

Because of the lack of experimentation, there is
justifiable skepticism in the literature as to the effective-
ness of TIR for use in dense vegetation, for surveying
birds in warm climates, for detecting well-insulated
species, and for use during daytime (Boonstra et al.
1995; Butler et al. 2006; Steen et al. 2012). Thus, research
aimed at verifying the ability of TIR systems to detect
avian chicks in a variety of vegetative conditions was
needed to serve as a proof of concept and stimulate
additional research into pairing TIR and sUAS. The
objectives of this study were to 1) determine the extent
to which two available TIR sensors were able to detect a
juvenile domestic chicken, Gallus gallus (used as a
surrogate for a tern chick) in various vegetation types
and from multiple elevations above the subject during
diurnal hours; 2) examine if computer-based digital
thresholding could allow users to successfully detect
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the thermal signature of the chick; 3) compare and
contrast the capabilities and efficacy of the two TIR
systems to determine potential for use in detecting tern
chicks in the field; and 4) examine the implications of our
results on the potential for future use of TIR cameras
with sUAS systems. It is our hope that this study can lay
the groundwork for further research into the paired use
of sUAS and TIR systems.

Methods

Sensor information
We compared two TIR cameras during this study, both

of which operate in the 8- to 15-lm long-wave IR
wavelength range. The first, a forward-looking IR (FLIR)
camera, was a FLIR Tau-1 (FLIR Systems, Wilsonville, OR);
it had an f-1.2 fixed focal-point lens with 13-mm zoom
and a 17-lm-pixel pitch, combined with a 640 3 512
pixel microbolometer detector array, a Tau virtual private
cloud module with universal serial bus and video cables,
and FLIR camera controller geographical user interface
software version 1.0.0.114. The FLIR Tau-1 was approx-
imately 44.5 3 44.5 3 44.5 mm and weighed 72 g with
the lens attached.

The second camera was an Infrared Cameras, Inc. (ICI)
9640 (Beaumont, TX); it had an f-1.0 lens with 12.5-mm
zoom and a 17-lm-pixel pitch, a 640 3 480 pixel
microbolometer detector array, a universal serial bus
interface module, and ICI IRFlash software version
2.15.5.18. The ICI 9640 measured approximately 34 3

30 3 34 mm and weighed 110 g with the lens attached.
Both lenses had fixed f-stops and shutter speeds and
were factory calibrated for their respective cameras. For
both cameras, we completed all adjustments to noise,
contrast, color palettes, and other parameters postcap-
ture.

We used a GoPro Hero 3þ camera (GoPro, Inc., San
Mateo, CA) with a Peau Productions 8-mm lens (Peau
Productions, San Diego, California) alongside the TIR
cameras to capture visual images of the study. We used
laptops and an iPad (Apple, Inc., Cupertino, CA) to run
the camera software and to view images in real time. All

cameras and associated technologies and services were
provided by UASBio, llc (Marriottsville, MD), and are
practical for use with sUAS systems as described.

Trials
We conducted trials outdoors in Marriottsville, Mary-

land on 9 June 2015 from 1400 to 1700 hours Eastern
Standard Time. We used a 12.8-m boom lift to raise the
camera systems to 3, 6, 9, 10.5, and 12 m above the
subject matter. Attached to the lift box was a wooden
platform carrying the two TIR cameras, a high-definition
visual camera, laptops for dynamically processing the TIR
images using software provided by the respective
camera manufacturers, and viewing monitors. Although
we recognize that drones may need to fly at higher
elevations than those tested in this study, we were
limited by the abilities of our boom lift and felt that the
elevations selected would provide the best examination
of the potential of this pairing for success.

We constructed seven bioboxes using rectangular
plastic buckets measuring 0.4 3 0.5 3 0.4 m, and filled
each with sand and vegetation collected from the Paul S.
Sarbanes Ecosystem Restoration Project at Poplar Island,
an important nesting site for common terns in the
Chesapeake Bay where the results of this experiment
may be applied. The seven bioboxes had vegetation
coverages ranging from no vegetation to . 90% cover
(Table 1, Figure 1). Vegetation types included salt-
meadow cordgrass Spartina patens, smooth cordgrass
Spartina alterniflora, sea rocket Cakile ednunata, ragweed
Ambrosia sp., and milkweed Asclepsias sp., all of which
are commonly found within or near the common tern
colony on Poplar Island. The combination of vegetation
types and densities was meant to best replicate realistic
field conditions. We placed a 7-d-old domestic chicken
(hereafter, chick) weighing 68.0 g and measuring ~50
mm 3 75 mm inside an IR-neutral plastic cup to keep it
stationary within each biobox. We used the same chick
throughout the experiment. Domestic chicken chicks are
ideal surrogates for terns, as they are easily obtainable
and are roughly the same size as a juvenile common
tern. Additionally, both chicken and common tern chicks

Table 1. Vegetative makeup of bioboxes used to simulate realistic common tern Sterna hirundo nesting habitats. We then placed a
domestic chicken chick Gallus gallus in each box and photographed them with two different thermal cameras to examine
detectability across a range of elevations, vegetative coverages, and image processing thresholds. Whereas we conducted work in
Millersville, Maryland on 9 June 2015, we obtained plants and sand from Poplar Island, a dredge material restoration site in the
Chesapeake Bay.

Biobox

Vegetation temperature

(difference from ambient, 8C)

Vegetation

densitya Species

A — — No cover

B �2.5 Sparse Saltmeadow cordgrass (Spartina patens)

C �2.17 Medium Saltmeadow cordgrass (Spartina patens)

D �2.36 Dense Saltmeadow cordgrass (Spartina patens)

E �1.74 Dense Sea rocket (Cakile edentula)

F �2.28 Medium Mixed saltmeadow cordgrass (Spartina patens) and smooth cordgrass

(Spartina alterniflora), sea rocket (Cakile edentula), and ragweed (Ambrosia spp.)

G �2.74 Sparse Milkweed (Asclepsias spp.)

a Volume densities are as follows: sparse ¼ 30% aerial cover, medium¼ 60% aerial cover, dense¼ 90% aerial cover.
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are semiprecocial and covered in down at hatching
(Nisbet et al. 2017; Chen et al. 2019), with the
integuments of common tern chicks and other gallina-
ceous chicks composed of comparable amounts of water
and equaling comparable proportions of the chicks’
overall body (Ricklefs 1979). Thus, we believe there
should be limited differences in the detectability of the
two species via a TIR camera.

We positioned each biobox directly underneath the
camera array and raised the lift to the prescribed heights.
We obtained photos of the bioboxes from each of the
cameras at every elevation (3, 6, 9, 10.5, and 12 m).
Because of differences in processing speed, we took
three consecutive replicate photos using the ICI camera
and only one using the FLIR camera. We recorded the
ambient temperature and general weather conditions
(sunny or otherwise) and used a handheld FLIR-TG165
imaging IR thermometer to measure the surface
temperature of the vegetation, sand, and chick.

Digital thresholding
We used digital thresholding to quantify the thermal

signature of the chick across bioboxes and elevations.
Pixel brightness is denoted by a value from 0 to 255,
where zero is absolute black and 255 is white. In digital
thresholding, all pixels with values above or below a
specific threshold are selected, with values not meeting
the selection criteria ignored. Here, we wrote a simple
Python script (Python Software Foundation, Wilmington,

DE) to repeatedly query each photo to select pixels with
values greater than or equal to thresholds 115, 130, 145,
160, 175, 190, and 205. Each query produced a new
raster file that could then be overlaid on the original
photo in ArcMap 10.6 (ESRI, Inc., Redlands, CA).

Image analysis
ICI image comparison. We selected 14 sets of the

replicate ICI images and clipped each image down to just
the inside of the biobox so that we removed all
uncontrolled environmental factors. We then compared
each of the three clipped images within each image set
by calculating the root mean-square error of the pixel
values. We selected this approach as it would allow for
direct comparison of values and not just identification of
correlation (i.e., are warmer areas the same between
pictures even if actual pixel values are different). We
conducted this exercise to determine if a single ICI image
from each biobox/elevation/threshold combination was
representative of the three taken at that combination, or
if individual examination was warranted. Once we
confirmed that ICI replicates were comparable (see
Results), we used only the first image of each ICI image
set for subsequent analyses.

Percentage of chick selected. After ICI image compar-
ison we examined the number of pixels in each
processed image selected within the chick’s thermal
signature using the Image Analysis tool in ArcMap. In the
majority of photos, the thermal signature of the chick

Figure 1. Representative images of seven bioboxes with chicken chick Gallus gallus from 3 m above the substrate of the box.
Vegetation types are as follows: (A) no cover; (B) sparse saltmeadow cordgrass Spartina patens; (C) medium saltmeadow cordgrass;
(D) dense saltmeadow cordgrass; (E) dense sea rocket Cakile edentula; (F) medium mixed grasses and forbs, including saltmeadow
cordgrass and smooth cordgrass Spartina alterniflora, sea rocket, and ragweed Ambrosia sp.; (G) sparse milkweed Asclepsias sp.
Sparse¼ 30% cover, medium¼ 60% cover, and dense¼ 90% cover. Images A2–G2 are from the FLIR Systems Tau-1 camera; A3–G3
are from the Infrared Cameras, Inc. 9640. We collected images in Millersville, Maryland on 9 June 2015 to examine detectability
across a range of elevations, vegetative coverages, and image processing thresholds.
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was distinct from surrounding pixels, and this could be
completed visually (Figure 2). For cases in which too
many pixels were selected within the biobox to discern
which pixels formed the chick (Figure 3), we recorded
the selected chick area as equal to the maximum chick
area. We calculated maximum chick area based on the
number of pixels required to display the chick fully at a
given elevation per camera, and determined it via the
following formula where all inputs are in millimeters and
all outputs in pixels:

Lengthi ¼
length of subject

distance from subject

� �
3 zoom

pixel pitch
;

Widthi ¼
width of subject

distance from subject

� �
3 zoom

pixel pitch
;

Maximum chick area ¼ lengthi 3 widthi:

Once we determined the number of chick pixels
selected at a given threshold, we calculated the
percentage of the chick selected via thresholding as

Percentage of chicks selected

¼ pixels selectedðwithin chick’s thermal signatureÞ
maximum chick area

:

We felt that it was necessary to always calculate
percentage selected as a function of the maximum
number of pixels the chick could excite because there
was no way to tell if the chick’s thermal signature in each
image truly represented the whole animal. This approach
allowed our calculations to be standardized across
images, even when the chick was covered by vegetation
and not visible within the paired GoPro image.

Figure 2. Digital processing results for a chicken chick Gallus gallus in biobox A (no vegetative cover) across thresholds (A) 205, (B)
175, (C) 145, and (D) 115. We took the photo at 3-m elevation using the Infrared Cameras, Inc. 9640. Note that although thresholds
145 and 115 produced the most complete representation of the chick’s thermal signature, we also selected nonchick pixels within
the biobox using these threshold values. We collected images in Millersville, Maryland on 9 June 2015 to examine detectability
across a range of elevations, vegetative coverages, and image processing thresholds.

Figure 3. Digital processing results for Infrared Cameras, Inc. 9640 camera images of biobox D (dense saltmarsh cordgrass Spartina
patens) across elevations (A) 3 m, (B) 6 m, (C) 9 m, and (D) 12 m. Threshold is represented by color, with the highest threshold values
represented by the warmest parts of the image. The chicken chick Gallus gallus is visible in the middle of the photo as the ‘‘hottest’’
spot. We collected images in Millersville, Maryland on 9 June 2015 to examine detectability across a range of elevations, vegetative
coverages, and image processing thresholds.
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Chick detection. For every processed image we
recorded whether the chick could be manually detected
by a human observer before digital thresholding. We
then repeated this at every threshold value, recording if
the chick was visible (i.e., a human observer could
identify the selected pixels as the chick), not selected at
all, or if too many pixels were selected to identify the
chick. Although examining the percentage of chick
selected via thresholding provides information regarding
whether the camera was able to indicate the presence of
the chick at all, this additional approach examines if the
depiction of the chick created via thresholding is
sufficient for an observer to actually identify the chick
in the processed image.

Statistical analysis. To examine the differences in the
percentage of the chick selected and ability to detect a
chick postprocessing across our array of images we
constructed a suite of 65 beta regression (using logit link
function) and binomial regression models, respectively.
Because beta regression (Cribari-Neto and Zeileis 2010)
requires data bound between 0 and 1, instances where
0% or 100% of a chick’s maximum area was detected
were mutated via the formula x0 ¼ (x(N – 1) þ s)/N
(Smithson and Verkuilen 2006), where N is sample size
and s is a numerical constant set to 0.5. All models
consisted of fixed effects for camera type, elevation,
biobox, and threshold, with all possible combinations of
one-way interactions between these fixed effects includ-
ed in the model suite. Although threshold appears to be
a continuous variable it is treated categorically because
of the range of values used in making a non-linear
relationship between detection and threshold likely. We
used the Akaike information criterion selected for small
sample size to select the best-fit model for percentage of
chick selected and chick detection independent of each
other. We performed all analyses in R 3.4.2. Complete
raw data are available in Data A1 (Archived Material).

Results

On the day we conducted the trials, it was cloudy and
the ambient temperature was 19.1–20.08C. The average
vegetation temperature was 17.08C and average sand
temperature was 17.28C. On average, box E (dense sea
rocket) had the warmest vegetation, at only 1.78C cooler
than the ambient temperature (Table 1). Box G (sparse
milkweed) had the coolest vegetation, at 2.78C cooler
than ambient. Seven bioboxes and five elevations led to
35 different possible combinations per camera and 140
total TIR images (three photos from the ICI camera and
one photo from the FLIR camera per combination).

ICI image comparison
We compared the pixels selected in 14 of the total 35

ICI image sets (the series of three images collected at
every elevation/biobox combination) at all threshold
levels. We selected replicates from biobox C (3, 6, 9, 10.5,
and 12 m), biobox E (6 and 9 m), biobox F (3, 6, and 9 m),
and biobox G (3, 6, 9, and 10.5 m). The mean value of the

root mean-square error for all comparisons was 5.10 and
ranged from 2.02 to 24.45 (Table S1, Supplemental
Material). As the highest root mean-square error was
9.69% and the mean was 2% of the possible range of
pixel values (0–255), we considered images within an ICI
image set to be comparable.

Percentage of chick selected via thresholding
We compared a suite of 65 candidate models to

explain trends in the percentage of a chick’s area
selected in each image using fixed effects for camera
type, threshold, elevation, and biobox along with every
possible combination of one-way interactions between
these variables. After model comparison we found that
the best-fit model was the following: percentage
detected ~ camera þ elevation þ threshold þ box.letter
þ camera:elevationþ camera:thresholdþ camera:box.let-
ter þ elevation:box.letter (Table S2, Supplemental Mate-
rial). For both the ICI and FLIR cameras, the percentage
of the chick selected via thresholding was generally
highest at lower threshold values and elevations (Figure
4; Figure S1, Supplemental Material; Table S3, Supple-
mental Material) and decreased as elevation and
threshold increased. However, the relative importance
of each variable changed dramatically across bioboxes
and camera types. For instance, elevation affected
selection percentage significantly more for the FLIR
camera than for the ICI cameras (P , 0.05).

Chick detection from processed images
Unfortunately, although a high percentage of a chick

may have been selected in a given image, that did not
mean that the chick could actually be identified from the
processed images. It was common for too many pixels to
be selected at lower thresholds, causing the image to
appear ‘‘washed out’’ so the chick could not be
differentiated from other selected pixels. The chick was
visible from at least one threshold value of 19 FLIR and
31 ICI images of a possible 35 (Figure 5). Comparatively,
the chick was visible in 29 FLIR and 32 ICI images of the
35 raw images.

We compared a suite of 65 candidate models to
explain trends in whether a chick could be detected after
processing each image using fixed effects for threshold,
elevation, and biobox along with every possible combi-
nation of one-way interactions between these variables.
After model comparison we found that the best-fit
model was the following: visible ~ cameraþ elevationþ
threshold þ box.letter þ camera:elevation þ camera:-
box.letter þ elevation:box.letter þ threshold:box.letter
(Table S4, Supplemental Material). Detectability generally
decreased with increasing elevation, and although we
made no qualitative comparisons among boxes, detect-
ability appeared greatest for both ICI and FLIR when little
or no vegetation is present (Figure 6; Table S5,
Supplemental Material). Of interest, no single threshold
value was best for all bioboxes.
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Discussion

The results we report in this study have positive
implications for the use of TIR þ sUAS systems for avian
surveys. Perhaps the most promising result was the
ability to detect the chick both before and after digital
processing in the majority of photos despite the fact that
testing occurred during fairly warm diurnal hours and

with a small target individual. Although the percentage
of chick selected decreased with the addition of dense
vegetation, the ability to detect the chick from at least
one threshold value at most biobox and elevation
combinations suggests that this approach could be used
across a variety of habitats. It would be especially well
suited for species such as common terns that are often
found in limited vegetation. Although the trends we

Figure 4. The model-fitted values of the percentage of a domestic chicken chick Gallus gallus selected by FLIR Systems Tau-1 and
Infrared Cameras, Inc. 9640 cameras as explained by varying elevation (in meters), threshold, and vegetation levels. The vegetation
types are as follows: (A) no cover; (B) sparse saltmeadow cordgrass Spartina patens; (C) medium saltmeadow cordgrass; (D) dense
saltmeadow cordgrass; (E) dense sea rocket Cakile edentula; (F) medium mixed grasses and forbs, including saltmeadow cordgrass
and smooth cordgrass Spartina alterniflora, sea rocket, and ragweed Ambrosia sp.; (G) sparse milkweed Asclepsias sp. Sparse¼ 30%
cover, medium ¼ 60% cover, and dense ¼ 90% cover. We collected images in Millersville, Maryland on 9 June 2015.
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observed in this study are promising, we did identify
several factors that warrant careful consideration when
designing future studies that utilize a combined TIR þ
sUAS approach.

One of the first elements that must be considered
when designing a TIRþ sUAS approach is the type of TIR
system that will be used. Although detector specifica-
tions are identical in the two TIR systems tested, at the
time of our study the lens system, camera processor,
interface, and software of the ICI system combined to
produce clearer and more consistent results than the
FLIR camera. In our study, the FLIR camera produced
darker photos of lower contrast, which subsequently led
to a dimmer chick signature and subsequent reduced
functionality, especially at 10 and 12.2 m. Our results
indicated that the ICI camera generally detected a
greater proportion of the chick’s thermal signature
across bioboxes and elevations than the FLIR camera,
though this also made it more prone to selecting too
many pixels, preventing chick identification postprocess-
ing. Still, the ICI camera allowed the greatest detection of
chicks across threshold, vegetation types, and elevations.
Additionally, the ICI camera system processed images
more quickly than the FLIR system, at a ratio of about 3
to 1, increasing the likelihood of detecting a moving bird.
It is encouraging that ICI replicate photos were
comparable, as variation would undermine the robust-
ness of using TIR to obtain consistent results. In this
competitive field, innovation and technical changes
occur frequently. In selecting a TIR system, the user
may be well served to carefully compare detectors,

lenses, sUAS compatibility, power requirements, image
transmission, and camera controls of multiple TIR models
available at the time of purchase.

Another important factor to consider before utilizing a
TIR þ sUAS approach is the habitat of the area to be
surveyed. Although we did not directly examine the role
of vegetation density or morphology, a qualitative
review of our findings indicates that the plant physiol-
ogy/growth pattern may be just as important to
detectability as sheer vegetation volume. Certain varie-
ties of plants have physiological characteristics shown to
inhibit thermal transmittance, either through a high rate
of reflectance or absorbance. For instance, sea rocket has
thick, waxy leaves, morphological characteristics that
have been shown to increase the absorption of IR
radiation (Gates et al. 1965; Mulroy 1979). Unsurprisingly,
we found sea rocket to have the highest temperature of
any vegetation used in this study. Other plant charac-
teristics such as thick stems may also act as a barrier to
IR. For instance, although we classified the total cover of
milkweed in biobox G as sparse, we could not discern the
thermal signature of the chick at high elevations for
either camera type. However, it does not appear as
though vegetation density and morphology influence
chick detectability uniformly across camera types. We
suggest that dense vegetation is less of a limitation for
the ICI camera because of the generally higher ‘‘bright-
ness’’ of images from this source, potentially affording
this camera type better detectability as the growing
season progresses.

Figure 5. Visibility, to a human observer, of a domestic chicken chick Gallus gallus in digitally processed images captured by FLIR
Systems Tau-1 and Infrared Cameras, Inc. 9640 cameras as explained by varying elevation (in meters), threshold, and vegetation
levels. The vegetation types are as follows: (A) no cover; (B) sparse saltmeadow cordgrass Spartina patens; (C) medium saltmeadow
cordgrass; (D) dense saltmeadow cordgrass; (E) dense sea rocket Cakile edentula; (F) medium mixed grasses and forbs, including
saltmeadow cordgrass and smooth cordgrass Spartina alterniflora, sea rocket, and ragweed Ambrosia sp.; (G) sparse milkweed
Asclepsias sp. Sparse¼ 30% cover, medium¼ 60% cover, and dense¼ 90% cover. We collected images in Millersville, Maryland on 9
June 2015.
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Although the physical systems and their applicability
to a given study area must be considered before data
collection, the selection of a threshold level for digital
thresholding can be performed in the laboratory. We
determined no single threshold value to be quantita-
tively ‘‘best’’ for analyzing the photos, although thresh-
olding results using values 130 through 190 typically

handled the trade-off between sensitivity and accuracy
best. The ideal result of thresholding is for all detected
pixels to fall within the chick’s thermal signal. In reality,
using simple thresholding to distinguish a defined,
complete image of the chick while simultaneously
detecting no other pixels in the image is difficult. This
is especially true for field-based images, where objects

Figure 6. Model-fitted values of the visibility, to a human observer, of a domestic chicken chick Gallus gallus in digitally processed
images captured by FLIR Systems Tau-1 and Infrared Cameras, Inc. 9640 cameras as explained by varying elevation (in meters),
threshold, and vegetation levels. Vegetation types are as follows: (A) no cover; (B) sparse saltmeadow cordgrass Spartina patens; (C)
medium saltmeadow cordgrass; (D) dense saltmeadow cordgrass; (E) dense sea rocket Cakile edentula; (F) medium mixed grasses
and forbs, including saltmeadow cordgrass and smooth cordgrass Spartina alterniflora, sea rocket, and ragweed Ambrosia sp.; (G)
sparse milkweed Asclepsias sp. Sparse ¼ 30% cover, medium ¼ 60% cover, and dense ¼ 90% cover. We collected images in
Millersville, Maryland on 9 June 2015.
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such as trees, rocks, and roads have strong heat
signatures of their own. In this small-scale experiment,
it was easy to visually identify the chick and differentiate
its thermal signature from surrounding pixels, even at
the higher elevations and with a variety of vegetation
types. Identification was also easier because of our
knowledge of the chick’s general location and the
absence of objects within the biobox that were emitting
IR radiation to the same degree as the chick. In future
studies, examination of a researcher’s field site may help
inform the choice of threshold, though the best
approach may be to process colonies in segments,
applying different threshold values as needed. Addition-
ally, because chicks were visible from raw images more
frequently than from thresholding, it may appear logical
to count chicks only from raw TIR images; however, users
must remember that we conducted this study on a very
small area. In practical scenarios manual counting could
be very time intensive and subjective; however, ap-
proach should not be completely discounted if feasible
as it at least warrants thorough consideration.

Unfortunately, when TIR images are captured in the
field, researchers will not have the benefit of prior
knowledge to aid in the differentiation between target
species and false positives. A simple approach to
increase certainty in identification is to conduct surveys
at an elevation that minimizes disturbance while
allowing for necessary image detail. If surveys must be
conducted at higher elevations because of disturbance
concerns, detection can be improved by using a longer
lens—focal lengths are available up to 60 mm; however,
as size increases, the field of view constricts, requiring
more flight time to completely survey a given area.
Additionally, researchers can apply image-editing and
pattern-recognition algorithms to remove extraneous
background signatures and isolate thermal signatures of
any birds present. Such approaches have proven useful
for detecting bats (Betke et al. 2007; Hristov et al. 2008)
and distinguishing them from birds (Mirzaei et al. 2012,
2014), as well as for identifying birds in drone-mounted
camera footage (Abd-Elrahman 2005). Precapture image
filtering, which forces thermal signatures to stand out
amid background noise, has also proven to be a viable
method for reducing false positives (Steen et al. 2012).

In addition to false positives, other potential factors to
consider when pairing TIR and sUAS equipment in a true
field setting include thermal loading, motion and
vibration, wind, and the dynamics of field operations.
The effects of these variables are not exclusively
beneficial or harmful—for example, wind could move
vegetation, revealing a hidden chick, or it could hinder
an observer’s ability to pinpoint the thermal signature of
a chick beneath a moving plant. However, thermal
loading will likely be the most significant problem to
cope with and could require that sUAS/TIR surveys be
conducted early in the day (Butler et al. 2006). Still,
sensitive detectors and computer algorithms should be
able to distinguish among endothermic organisms,
plants, and inorganic materials based on emissivity
differences, even if objects are precisely the same
temperature. Furthermore, additional research into the

use of paired sUAS and TIR technology for breeding
colony surveys is needed to understand the ability of this
approach to determine brood size. Although we
examined the ability to detect a single chick, we did
not try to determine if brood size could be accurately
calculated using this approach.

Detecting terns, especially elusive chicks that have left
the nest, is a challenging endeavor. We conclude that the
use of TIR paired with sUAS has potential to improve
detection and decrease human disturbance to a colony
of nesting waterbirds. The myriad of potential modifica-
tions involved makes the system functional across many
applications. This study suggests that for successful use
in the field, more complex pre- and postprocessing will
be required. Further studies will need to examine the
accuracy of this technique for detecting nests, eggs, and
adults in the field.
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Table S1. Root mean-square error between each of
the three images that we took with the Infrared Cameras,
Inc. 9640 thermal camera at each elevation and
vegetation combination after each image being clipped
to just the area of the biobox. We took images of
multiple bioboxes containing differing vegetative com-
ponents and densities: (C) medium saltmeadow cord-
grass Spartina patens; (E) dense sea rocket Cakile
edentula; (F) medium mixed grasses and forbs, including
saltmeadow cordgrass, smooth cordgrass Spartina alter-
niflora, sea rocket, and ragweed Ambrosia sp.; (G) sparse
milkweed Asclepsias sp. Sparse ¼ 30% cover, medium ¼
60% cover, and dense ¼ 90% cover. Elevation is in
meters. We collected all images in Millersville, Maryland
on 9 June 2015.
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062.S1 (231 KB PDF).

Table S2. Comparison of beta regression models for
explaining variation in the percentage of a domestic
chicken chick Gallus gallus selected after digital process-
ing of a thermal image. We took images with two
cameras (FLIR Systems Tau-1 and Infrared Cameras, Inc.
9640) at each of five elevations (3, 6, 9, 10.5, and 12 m)
and seven bioboxes containing differing vegetative
components and densities: (A) no cover; (B) sparse
saltmeadow cordgrass Spartina patens; (C) medium
saltmeadow cordgrass; (D) dense saltmeadow cordgrass;
(E) dense sea rocket Cakile edentula; (F) medium mixed
grasses and forbs, including saltmeadow cordgrass and
smooth cordgrass Spartina alterniflora, sea rocket, and
ragweed Ambrosia sp.; (G) sparse milkweed Asclepsias sp.
Sparse¼ 30% cover, medium¼ 60% cover, and dense¼
90% cover. We collected all images in Millersville,
Maryland on 9 June 2015 and processed them at
thresholds of 115, 130, 145, 160, 175, 190, and 205.
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Table S3. Full beta estimates describing the relation-
ship among elevation, threshold, camera type, and
biobox upon the percentage of a domestic chicken
chick Gallus gallus selected by image processing. We
took images with two cameras (FLIR Systems Tau-1 and
Infrared Cameras, Inc. 9640) at each of five elevations (3,
6, 9, 10.5, and 12 m) and seven bioboxes containing
differing vegetative components and densities: (A) no
cover; (B) sparse saltmeadow cordgrass Spartina patens;
(C) medium saltmeadow cordgrass; (D) dense saltmead-
ow cordgrass; (E) dense sea rocket Cakile edentula; (F)
medium mixed grasses and forbs, including saltmeadow
cordgrass and smooth cordgrass Spartina alterniflora, sea
rocket, and ragweed Ambrosia sp.; (G) sparse milkweed
Asclepsias sp. Sparse¼ 30% cover, medium¼ 60% cover,
and dense ¼ 90% cover. We collected all images in
Millersville, Maryland on 9 June 2015 and processed
them at thresholds of 115, 130, 145, 160, 175, 190, and
205.
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Table S4. Comparison of binomial regression models
for explaining variation in a human observer’s ability to
detect a domestic chicken chick Gallus gallus from a
digitally processed thermal image. We took images with
two cameras (FLIR Systems Tau-1 and Infrared Cameras,
Inc. 9640) at each of five elevations (3, 6, 9, 10.5, and 12
m) and seven bioboxes containing differing vegetative
components and densities: (A) no cover; (B) sparse
saltmeadow cordgrass Spartina patens; (C) medium
saltmeadow cordgrass; (D) dense saltmeadow cord-
grass; (E) dense sea rocket Cakile edentula; (F) medium
mixed grasses and forbs, including saltmeadow cord-
grass and smooth cordgrass Spartina alterniflora, sea
rocket, and ragweed Ambrosia sp.; (G) sparse milkweed
Asclepsias sp. Sparse¼ 30% cover, medium¼60% cover,
and dense ¼ 90% cover. We collected all images in
Millersville, Maryland on 9 June 2015 and processed
them at thresholds of 115, 130, 145, 160, 175, 190, and
205.
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062.S4 (298 KB PDF).

Table S5. Full beta estimates describing the relation-
ships among elevation, threshold, camera type, and
biobox upon the ability of a human observer to detect a
domestic chicken chick Gallus gallus in a digitally
processed thermal image. We took images with two
cameras: one forward-looking infrared (FLIR) camera, the
FLIR Tau-1, from FLIR Systems, and one from the Infrared
Cameras, Inc. 9640. We took images at each of five
elevations (3, 6, 9, 10.5, and 12 m) and seven bioboxes
containing differing vegetative components and densi-
ties: (A) no cover; (B) sparse saltmeadow cordgrass
Spartina patens; (C) medium saltmeadow cordgrass; (D)
dense saltmeadow cordgrass; (E) dense sea rocket Cakile
edentula; (F) medium mixed grasses and forbs, including

saltmeadow cordgrass and smooth cordgrass Spartina
alterniflora, sea rocket, and ragweed Ambrosia sp.; (G)
sparse milkweed Asclepsias sp. Sparse ¼ 30% cover,
medium ¼ 60% cover, and dense ¼ 90% cover. We
collected all images in Millersville, Maryland on 9 June
2015 and processed them at thresholds of 115, 130, 145,
160, 175, 190, and 205.

Found at DOI: https://doi.org/10.3996/072019-JFWM-
062.S5 (236 KB PDF).

Figure S1. Raw percentage of a domestic chicken
chick Gallus gallus selected by FLIR Systems Tau-1 (FLIR)
and Infrared Cameras, Inc. 9640 (ICI) cameras across
elevation (in meters), threshold, and vegetation levels.
The vegetation types are as follows: (A) no cover; (B)
sparse saltmeadow cordgrass Spartina patens; (C) medi-
um saltmeadow cordgrass; (D) dense saltmeadow
cordgrass; (E) dense sea rocket Cakile edentula; (F)
medium mixed grasses and forbs, including saltmeadow
cordgrass and smooth cordgrass Spartina alterniflora, sea
rocket, and ragweed Ambrosia sp.; (G) sparse milkweed
Asclepsias sp. Sparse¼ 30% cover, medium¼ 60% cover,
and dense ¼ 90% cover. We collected all images in
Millersville, Maryland on 9 June 2015.
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