Urban building energy analysis has attracted more attention as the population living in cities increases as does the associated energy consumption in urban environments. This paper proposes a systematic bottom-up method to conduct energy analysis and assess energy saving potentials by combining dynamic engineering-based energy models, machine learning models, and global sensitivity analysis within the GIS (Geographic Information System) environment for large-scale urban buildings. This method includes five steps: database construction of building parameters, automation of creating building models at the GIS environment, construction of machine learning models for building energy assessment, sensitivity analysis for choosing energy saving measures, and GIS visual evaluation of energy saving schemes. Campus buildings in Tianjin (China) are used as a case study to demonstrate the application of the method proposed in this research. The results indicate that the method proposed here can provide reliable and fast analysis to evaluate the energy performance of urban buildings and determine effective energy saving measures to reduce energy consumption of urban buildings. Moreover, the GIS-based analysis is very useful to both create energy models of buildings and display energy analysis results for urban buildings.

This content is only available as a PDF.
You do not currently have access to this content.