Global sensitivity analysis based on polynomial chaos expansion (PCE) shows interesting characteristics, including reduced simulation runs for computer models and high interpretability of sensitivity results. This paper explores these features of the PCE-based sensitivity analysis using an office building as a case study with the EnergyPlus simulation program. The results indicate that the predictive performance of PCE models is closely correlated with the stability of the sensitivity index, depending on sample number and expansion degree. Therefore, it is necessary to carefully assess model accuracy of PCE models and evaluate convergence of the sensitivity index when using PCE-based sensitivity analysis. It is also found that more simulation runs of building energy models are required for a higher expansion degree of the PCE model to obtain a reliable sensitivity index. A bootstrap technique with a random sample can be used to construct confidence intervals for sensitivity indicators in building energy assessment to provide robust sensitivity rankings.

[1]
McCoy
A.P,
Zhao
D.,
Ladipo
T.,
Agee
P.,
Mo
Y.,
Comparison of green home energy performance between simulation and observation: A case of Virginia, United States
,
Journal of Green Building
,
13
(
2018
)
70
88
.
[2]
Sick
F.,
Schade
S.,
Mourtada
A.,
Uh
D.,
Grausam
M.,
Dynamic building simulations for the establishment of a Moroccan thermal regulation for buildings
,
Journal of Green Building
,
9
(
2014
)
145
165
.
[3]
Tian
W.,
Heo
Y.,
de Wilde
P.,
Li
Z.,
Yan
D.,
Park
C.S.,
Feng
X.,
Augenbroe
G.,
A review of uncertainty analysis in building energy assessment
,
Renewable and Sustainable Energy Reviews
,
93
(
2018
)
285
301
.
[4]
Tian
W.,
A review of sensitivity analysis methods in building energy analysis
,
Renewable and Sustainable Energy Reviews
,
20
(
2013
)
411
419
.
[5]
Romani
Z.,
Draoui
A.,
Allard
F.
,
Metamodeling the heating and cooling energy needs and simultaneous building envelope optimization for low energy building design in Morocco
,
Energy and Buildings
,
102
(
2015
)
139
148
.
[6]
Menberg
K.,
Heo
Y.,
Choudhary
R.
,
Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information
,
Energy and Buildings
,
133
(
2016
)
433
445
.
[7]
Yang
S.,
Tian
W.,
Cubi
E.,
Meng
Q.,
Liu
Y.,
Wei
L.
,
Comparison of Sensitivity Analysis Methods in Building Energy Assessment
,
Procedia Engineering
,
146
(
2016
)
174
181
.
[8]
Nguyen
A.-T.,
Reiter
S.,
A performance comparison of sensitivity analysis methods for building energy models
,
Building Simulation
,
8
(
2015
)
651
664
.
[9]
Delgarm
N.,
Sajadi
B.,
Azarbad
K.,
Delgarm
S.
,
Sensitivity analysis of building energy performance: A simulation-based approach using OFAT and variance-based sensitivity analysis methods
,
Journal of Building Engineering
,
15
(
2018
)
181
193
.
[10]
Tian
W.,
Liu
Y.,
Zuo
J.,
Yin
B.,
Sun
Y.,
Fu
X.,
Meng
X.
,
Building Energy Assessment Based on a Sequential Sensitivity Analysis Approach
,
Procedia Engineering
,
205
(
2017
)
1042
1048
.
[11]
Mastrucci
A.,
Pérez-López
P.,
Benetto
E.,
Leopold
U.,
Blanc
I.,
Global sensitivity analysis as a support for the generation of simplified building stock energy models
,
Energy and Buildings
,
149
(
2017
)
368
383
.
[12]
Tian
W.,
Wilde
P.d.,
Li
Z.,
Song
J.,
Yin
B.,
Uncertainty and Sensitivity Analysis of Energy Assessment for Office Buildings based on Dempster-Shafer Theory
,
Energy Conversion and Management
,
174
(
2018
)
705
718
.
[13]
Tian
W.,
Yang
S.,
Zuo
J.,
Li
Z.,
Liu
Y.
,
Relationship between built form and energy performance of office buildings in a severe cold Chinese region
,
Building Simulation
,
10
(
2017
)
11
24
.
[14]
Le Gratiet
L.,
Marelli
S.,
Sudret
B.,
Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes
,
in:
Ghanem
R.,
Higdon
D.,
Owhadi
H.
(Eds.)
Handbook of Uncertainty Quantification
,
Springer International Publishing
,
Cham
,
2017
, pp.
1289
1325
.
[15]
Sudret
B.,
Mai
C.V.
,
Computing derivative-based global sensitivity measures using polynomial chaos expansions
,
Reliability Engineering & System Safety
,
134
(
2015
)
241
250
.
[16]
Sudret
B.
,
Global sensitivity analysis using polynomial chaos expansions
,
Reliability Engineering & System Safety
,
93
(
2008
)
964
979
.
[17]
Faggianelli
G.A,
Mora
L.,
Merheb
R.
,
Uncertainty quantification for Energy Savings Performance Contracting: Application to an office building
,
Energy and Buildings
,
152
(
2017
)
61
72
.
[18]
MOC, GB50189-2015
.
Design standard for energy efficiency of public buildings
,
Ministry of Construction (MOC) of P.R.China China Planning Press
(2015) (in Chinese),
2015
.
[19]
MOC, GB50189-2005
.
Energy Conservation Design Regulation for Public Buildings
.
Ministry of Construction (MOC) of P.R.China China Planning Press
(2005) (in Chinese),
2005
.
[20]
Helton
J.C,
Davis
F.,
Johnson
J.D.,
A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling
,
Reliability Engineering & System Safety
,
89
(
2005
)
305
330
.
[21]
Carnell
R.
,
R package lhs: Latin Hypercube Samples
.
R package version 0.14, https://CRAN.R-project.org/package=lhs, accessed 2018-11-10, in, 2016.
[22]
DOE, EnergyPlus V8.8, September 2017, Department of Energy, USA, in, 2017.
[23]
R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. accessed 2018-12-10, in, 2017.
[24]
Sargsyan
K.
,
Surrogate Models for Uncertainty Propagation and Sensitivity Analysis
,
in:
Ghanem
R.,
Higdon
D.,
Owhadi
H.
(
Eds.
)
Handbook of Uncertainty Quantification, Springer International Publishing
,
Cham
,
2016
, pp.
1
26
.
[25]
Gauchi
J.P,
Bensadoun
A.,
Colas
F.,
Colbach
N.
,
Metamodeling and global sensitivity analysis for computer models with correlated inputs: A practical approach tested with a 3D light interception computer model
,
Environmental Modelling & Software
,
92
(
2017
)
40
56
.
[26]
Dubreuil
S.,
Berveiller
M.,
Petitjean
F.,
Salaün
M.,
Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion
,
Reliability Engineering & System Safety
,
121
(
2014
)
263
275
.
[27]
Helton
J.C,
Davis
F.J,
Johnson
J.D
,
A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling
,
Reliability Engineering & System Safety
,
89
(
2005
)
305
330
.
[28]
Hansen
C.W,
Helton
J.C,
Sallaberry
C.J
,
Use of replicated Latin hypercube sampling to estimate sampling variance in uncertainty and sensitivity analysis results for the geologic disposal of radioactive waste
,
Reliability Engineering & System Safety
,
107
(
2012
)
139
148
.
This content is only available as a PDF.

Author notes

1. College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China, 300222

2. Tianjin International Joint Research and Development Center of Low-Carbon Green Process Equipment, Tianjin 300222, China

3. Chair of Building Performance Analysis, University of Plymouth, Plymouth, Devon PL4 8AA, United Kingdom

4. Tianjin Architecture Design Institute, Tianjin, China, 300074