Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-1 of 1
Kapil Thapa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Health and Pollution
Journal of Health and Pollution (2021) 11 (29): 210211.
Published: 02 March 2021
Abstract
Background. The Nepalese government announced a nationwide lockdown beginning on March 24, 2020 as an attempt to restrain the spread of COVID-19. The prohibition in flight operations and movement of vehicles, factory shutdowns and restriction in people's movement due to the lockdown led to a significant reduction in the amounts of pollutants degrading air quality in many countries. Objectives. The present study aimed to analyze changes in particulate matter (PM) emissions and the air quality index (AQI) of six cities in Nepal i.e., Damak, Simara, Kathmandu, Pokhara, Nepalgunj and Surkhet due to the nationwide lockdown in response to the COVID-19 outbreak. Methods. Daily PM concentrations of each of the six study cities from January 24 to September 21, 2020 were obtained from the World Air Quality Index project (https://aqicn.org) and analyzed using R Studio software. The drop percentage was calculated to determine the change in PM 2.5 and PM 10 concentration during different time periods. Independent sample Mann–Whitney U tests were performed to test the significance of differences in mean concentration for each site during the lockdown period (24 March–24 July 2020) and its corresponding period in 2019. Similarly, the significance of differences in mean concentrations between the lockdown period and the period immediately before lockdown (23 January–23 March) was also examined using the same test. Results. During the lockdown period, in overall Nepal, AQI PM2.5 and AQI PM10 were within the moderate zone for the maximum number of days. As a result of the lockdown, the highest immediate and final drop of PM 2.5 was observed in Damak (26.37%) and Nepalgunj (80.86%), respectively. Similarly, the highest immediate drop of PM 10 was observed in Surkhet (37.22%) and finally in Nepalgunj (81.14%). Analysis with the Mann–Whitney U test indicated that for both PM types, all sites showed a statistically significant (p < 0.05) difference in mean concentrations during lockdown and the corresponding period in 2019. Conclusions. The present study explored the positive association between vehicular movement and PM emissions, highlighting the need for alternative fuel sources to improve air quality and human health. Competing Interests. The authors declare no competing financial interests.