The nuclear source term, defined as the quantity, timing, and characteristic of the release of radioactive material to the environment following a core-melt accident, was thoroughly debated in 1985. This debate, summarized here, turns on the Nuclear Regulatory Commission's (NRC) source term for radioactive iodine, which is postulated as potentially the most life-threatening radionuclide that might escape in a nuclear power-plant accident. A generic radioiodine source term has been used by NRC as the surrogate for all others; thus, it has become one of the bases on which nuclear-safety regulations are founded. Following the Three Mile Island (TMI) accident, from which only traces of radioiodine escaped, scientists began arguing that nuclear regulations based on source-term calculations are erroneous and should be modified. The American Nuclear Society (ANS) and industry researchers have concluded that warranted reductions in the NRC source terms could range from a factor of ten to several factors of ten in most accident scenarios. The American Physical Society (APS), after agreeing with a large body of the conclusions from the other research groups, has told NRC that its source-term data base is still inadequate because of the existence of a number of uncertainties it found therein. Although APS presented no such conclusion, its findings made clear to NRC that an early reduction of all source terms is not warranted. The anti-nuclear lobby agrees with APS. The NRC has taken a cautious, conservative approach to the revision of its regulations based on new source-term data, although it too concedes that its old methodologies and conclusions must be revised and ultimately superceded.

This content is only available as a PDF.
You do not currently have access to this content.