This study evaluated the effect of ultraviolet functionalization (UV) on bone integration ability in rabbit model, using epifluorescence microscopy. Each of 12 rabbits (n = 6) received randomly four titanium domes prepared with or without ultraviolet for 48 hours (UVC, λ = 250 ± 20 nm; Philips, Tokyo, Japan): (1) turned surface (T), (2) turned surface with UV (T-UV), (3) sandblasted (120 μm aluminum oxide) and etched by 18% hydrochloric acid and 49% sulphuric acid at 60°C for 30 min (SLA) and (4) SLA surface with UV (SLA-UV). Fluorochrome bone labels were marked by oxytetracycline at 25 mg/kg on 13th days and 14th days and calcein at 5 mg/kg on 3th days and 4th days before euthanization. The study samples were sacrified at 2 weeks and 4 weeks. The undecalcified specimens were prepared. The newly formed total bone of cross-sectional area (TB, %), the mineralized trabecular bone of cross-sectional area (MB, %), and the new bone and dome contact (BDC, %) were measured and analyzed by fluorescence microscope and Image Pro Express 6.0. The data of MB and TB showed new bone regeneration was increased in all groups, but no signs of difference were found. However, the means BDC of UV treatment on turned surface at 4 weeks, the UV treated on SLA surface at 2 weeks and 4 weeks were statistically significantly higher than the control group (P < .05). Within the limitations of the study, it can be concluded that ultraviolet functionalization on the titanium surface could enhance the new bone tissues and titanium surface integration.

You do not currently have access to this content.