Early and effective integration of titanium-based materials into bone tissue is of vital importance for long-term stability of implants. Surface modification is commonly used to enhance cell-substrate interactions for improving cell adhesion, proliferation, and activity. Here, the surface of titanium substrates and commercial implants were coated with blood (TiB), fetal bovine serum (TiF), and phosphate-buffered saline (TiP) solution using a spin coating process. Surface roughness and wettability of samples were measured using contact angle measurements and atomic force microscopy. The samples were then exposed to human osteoblast-like MG63 cells in order to evaluate adhesion, growth, differentiation, and morphology on the surface of modified samples. Untreated titanium disks were used as controls. The lowest roughness and wettability values were found in unmodified titanium samples followed by TiP, TiF, and TiB. The percentage of cellular attachment and proliferation for each sample was measured using an MTT (3-[4,5-dimethylthiazol-2yl] 2,5diphenyl-2H-tetrazoliumbromide) assay. Cell adhesion and proliferation were most improved on TiB followed closely by TiF. The results of this study revealed an increased expression of the osteogenic marker protein alkaline phosphatase on TiB and the coated commercial titanium implants. These results suggested that precoating titanium samples with blood may improve cellular response by successfully mimicking a physiological environment that could be beneficial for clinical implant procedures.

You do not currently have access to this content.