When dental implants become infected, the progression of the disease is rapid. Commercially available dental implant surfaces can be easily contaminated, resulting in rapid progression of peri-mucositis and peri-implantitis. The aim of this study was to evaluate, in vitro, the pattern of doxycycline release from by dental implants with titanium nanotube surface (DINS) at different pHs to examine novel drug loading and chemical coating techniques. Nine DINS were loaded with doxycycline and subsequently coated with polylactic-co-glycolic acid (PLGA). High-performance liquid chromatography (HPLC) was used to measure the amounts of released doxycycline in a 30-day period. Cytotoxicity of the DINS was evaluated by an assay using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT). The results showed that the experimental DINS coated with doxycycline and PLGA showed a mean drug release during the experimental period for the groups: pH 7.4 (8.39 μg/mL), pH 6.4 (8.63 μg/mL). The pH 5.4 (15.18 μl/mL) doxycycline release from DINS was faster at pH 5.4 than those at pHs 6.4 and 7.4 (P = .0031 and .0034, respectively). This new surface treatment of dental implants with titanium nanotubes and subsequent drug loading demonstrated biocompatibility and sustained doxycycline release over a 30-day period. Additional studies are needed in order to adopt a stable drug release at neutral pH environment while warranting a constant drug release in an acidic pH environment.

You do not currently have access to this content.