ABSTRACT
In oral implantology, surgeons often confront the need to improve alveolar bone quality and volume before implantation in patients with bone defects. While Guided Bone Regeneration (GBR) with titanium meshes is a clinical “gold standard” for bone augmentation, mesh removal pre-implantation presents a drawback. This study explores biodegradable scaffolds as an alternative. The research investigates the impact of various compositions of customized bone grafting scaffolds on proliferation and osteogenic differentiation processes in vitro. Plates (10 x 10 x 0.5 mm) were fabricated from polylactide (PLA), PLA with 15% hydroxyapatite nanoparticles (PLA/HA), and polylactide with glycolic acid copolymers (PLGA 60:40 and 85:15). Gingival fibroblasts assessed the influence of experimental samples on proliferation and osteogenic differentiation in a low-glucose medium. Osteogenic differentiation was induced, and alizarin red staining measured extracellular matrix calcification via spectrophotometry. Active proliferation of gingival fibroblasts occurred along scaffold edges during cultivation. Although cells proliferated with experimental samples, rates were lower than control cells. PLA/HA showed higher alizarin red staining intensity, indicating enhanced matrix calcification. Experimental samples (PLA, PLA/HA, PLGA 85:15, PLGA 60:40) supported cell proliferation at lower rates than control. PLA/HA demonstrated increased matrix calcification. Biodegradable membranes were non-toxic, suggesting potential for bone augmentation.