Despite recent advances in medical technology and a global effort to improve public health and hygiene, parasitic infections remain a major health and economic burden worldwide. The World Health Organization estimates that about 1/3 of the world's population is currently infected with a soil-transmitted helminth, and millions more suffer from diseases caused by protozoan parasites including Plasmodium, Trypanosoma, and Leishmania species. Due to the selective pressure applied by parasitic and other infections, animals have evolved an intricate immune system; however, the current worldwide prevalence of parasitic infections clearly indicates that these pathogens have adapted equally well. Thus, developing a better understanding of the host–parasite relationship, particularly by focusing on the host immune response and the mechanisms by which parasites evade this response, is a critical first step in mitigating the detrimental effects of parasitic diseases. Macrophages are critical contributors during the host response to protozoan parasites, and the success or failure of these cells often tips the balance in favor of the host or parasite. Herein, we briefly discuss macrophage biology and provide an update on our current understanding of how these cells recognize glycosylphosphatidylinositol anchors from protozoan parasites as well as malarial hemozoin.

You do not currently have access to this content.