The life history characteristics of hosts often influence patterns of parasite infection either by affecting the likelihood of parasite exposure or the probability of infection after exposure. In birds, migratory behavior has been suggested to affect both the composition and abundance of parasites within a host, although whether migratory birds have more or fewer parasites is unclear. To help address these knowledge gaps, we collaborated with airports, animal rescue/rehabilitation centers, and hunter check stations in the San Francisco Bay Area of California to collect 57 raptors, egrets, herons, ducks, and other waterfowl for parasitological analysis. After dissections of the gastrointestinal tract of each host, we identified 64 taxa of parasites: 5 acanthocephalans, 24 nematodes, 8 cestodes, and 27 trematodes. We then used a generalized linear mixed model to determine how life history traits influenced parasite richness among bird hosts, while controlling for host phylogeny. Parasite richness was greater in birds that were migratory with larger clutch sizes and lower in birds that were herbivorous. The effects of clutch size and diet are consistent with previous studies and have been linked to immune function and parasite exposure, respectively, whereas the effect of migration supports the hypothesis of “migratory exposure” rather than that of “migratory escape.”

You do not currently have access to this content.