ABSTRACT

Toxoplasma gondii infections are common in humans and animals worldwide. The present review summarizes worldwide information on the prevalence of clinical and subclinical infections, epidemiology, and genetic diversity of T. gondii infections in bears. Seroprevalence estimates of T. gondii in black bears (Ursus americanus) are one of the highest of all animals. In Pennsylvania, seroprevalence is around 80% and has remained stable for the past 4 decades. Approximately 3,500 bears are hunted yearly in Pennsylvania alone. The validity of different serological tests is discussed based on bioassay and serological comparisons. Seroprevalence in grizzly bears (Ursus arctos) is lower than that in black bears. Even polar bears (Ursus maritimus) are infected; infections in these animals are ecologically interesting because of the absence of felids in the Arctic. Clinical toxoplasmosis in bears is rare and not documented in adult animals. The few reports of fatal toxoplasmosis in young bears need confirmation. Viable T. gondii has been isolated from black bears and a grizzly bear. The genetic diversity of isolates based on DNA from viable T. gondii isolates is discussed. Genetic typing of a total of 26 T. gondii samples from bears using 10 PCR-RFLP markers revealed 8 PCR-RFLP ToxoDB genotypes: #1 (clonal type II) in 3 samples, #2 (clonal type III) in 8 samples, #4 (haplogroup 12) in 3 samples, #5 (haplogroup 12) in 3 samples, #74 in 5 samples, #90 in 1 sample, #147 in 1 sample, and #216 in 2 samples. These results suggest relatively high genetic diversity of T. gondii in bears. Overall, T. gondii isolates in bears range from those circulating in a domestic cycle (genotypes #1 and #2) to those mainly associated with wildlife (such as genotypes #4 and #5, together known as haplogroup 12). A patient who acquired clinical Trichinella spiralis infection after eating undercooked bear meat also acquired T. gondii infection. Freezing of infected meat kills T. gondii, including the strains isolated from bears.

You do not currently have access to this content.