Human lymphatic filariasis is caused primarily by Brugia malayi and Wuchereria bancrofti. Unraveling this disease is complex, as people living in endemic areas exhibit a vast array of clinical states and immune responses. The Mongolian gerbil (Meriones unguiculatus)-B. pahangi model of human lymphatic filariasis has provided much information on immune parameters associated with filarial infection. Prior investigations in our laboratory have shown that gerbils closely mimic a subset of patients classified as microfilaremic but asymptomatic, a group that comprises the majority of people living in endemic areas. Worm recovery data suggest that gerbils carrying current B. pahangi infections do not show any resistance to subsequent subcutaneous B. pahangi infections. The aim of the present studies was to investigate the T cell cytokine response in gerbils receiving multiple infections of B. pahangi as a means of mimicking the conditions experienced by people in endemic areas. The T cell cytokine profile generated by multiply infected gerbils was not different from that previously generated by gerbils infected only once with B. pahangi. Gerbils infected multiple times with B. pahangi showed a transient increase in IL-5, which corresponded to the increased eosinophil levels previously reported from multiply infected gerbils. Chronically infected gerbils showed elevated IL-4 mRNA levels, as has been reported from gerbils infected only once with B. pahangi. Chronic infections were also associated with a state of immune hyporesponsiveness, as determined by the characterization of lymphatic thrombi and lymphoproliferation of spleen and renal lymph node cells to worm antigen.

You do not currently have access to this content.