We tested whether host fish that acquired resistance to glochidia of one mussel species were cross-resistant to glochidia of other species. Largemouth bass (Micropterus salmoides) were primed with 4–5 successive infections of glochidia of Lampsilis reeveiana. The percentage of attached glochidia that survived and transformed to the juvenile stage (transformation success) was compared between primed fish and naïve controls. Transformation success of L. reeveiana, Lampsilis abrupta, Villosa iris, and Utterbackia imbecillis was significantly lower on primed fish (37.8%, 43.5%, 67.0%, and 13.2%, respectively) than on control fish (89.0%, 89.7%, 90.0%, and 22.2% respectively). Immunoblotting was used to analyze the binding of serum antibodies from primed fish with glochidia proteins. Antibodies bound to glochidia proteins of similar molecular weight from L. reeveiana and L. abrupta. Bound proteins of V. iris differed in molecular weight from those of the Lampsilis species. There was no binding to specific glochidia proteins of U. imbecillis or Strophitus undulatus. Our results indicate that host-acquired resistance can extend across mussel genera and subfamilies and might involve both specific and nonspecific mechanisms. Understanding the specificity of acquired resistance of hosts to glochidia could enhance understanding of the evolutionary and ecological relationships between mussels and their host fishes.

You do not currently have access to this content.