Babesia Washington-1 (WA1) is a newly identified intraerythrocyte infectious agent of human babesiosis in the western United States. The purpose of the present study is to describe the ultrastructural changes in affected erythrocytes during the infectious process in a susceptible animal model, the golden Syrian hamster. Two, 1-mo-old female hamsters were inoculated intraperitoneally (i.p.) with 1.8 × 109 Babesia WA1-infected erythrocytes originally isolated from a human case and serially passaged in hamsters. Saphenous vein blood samples (20 μl) were collected at 0, 24, 36, 48, 60, 72, 84, and 96 hr postinoculation (PI). Parasitemia was determined at each time interval by quick staining of blood smears showing 0, 2.5, 5, 10, 12.5, 22.5, 70, and almost 100% parasitemic erythrocytes at the corresponding PI time interval, respectively. Animals showed weakness and dehydration 72 hr PI inoculation, and were killed by 96 hr PI. Selected blood samples from 0, 24, 48, 72, and 96 hr were fixed in cacodylate buffer, dehydrated in ethanol gradients, resin embedded, and then thin sectioned and stained with uranyl acetate and lead citrate for transmission electron microscopy or gold-coated for scanning electron microscopy (SEM). Shape and surface membrane changes in erythrocytes were demonstrated by SEM and were more evident at 72 and 96 hr PI. Infected erythrocytes underwent changes in shape 24 hr PI, from few protrusions to several perforations, some of them resembling a “swiss cheese” appearance 96 hr PI. Several erythrocytes had irregular surface membranes and Babesia WA1 organisms were seen at different stages of development within erythrocytes, from single trophozoites to several merozoites (young trophozoites), some of them dividing to form typical tetrads. In general, Babesia WA1 induced severe morphological changes in the erythrocytes, and these changes were more evident in almost all infected cells 96 hr PI.
Skip Nav Destination
Article navigation
October 2006
RESEARCH NOTES|
October 01 2006
Ultrastructure of Babesia WA1 (Apicomplexa: Piroplasma) During Infection of Erythrocytes in a Hamster Model
W. Braga;
W. Braga
aDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine/Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506-5606
Search for other works by this author on:
J. Venasco;
J. Venasco
aDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine/Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506-5606
Search for other works by this author on:
L. Willard;
L. Willard
aDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine/Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506-5606
Search for other works by this author on:
M. H. Moro
M. H. Moro
aDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine/Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506-5606
bTo whom correspondence should be addressed. mmoro@vet.ksu.edu
Search for other works by this author on:
J Parasitol (2006) 92 (5): 1104–1107.
Citation
W. Braga, J. Venasco, L. Willard, M. H. Moro; Ultrastructure of Babesia WA1 (Apicomplexa: Piroplasma) During Infection of Erythrocytes in a Hamster Model. J Parasitol 1 October 2006; 92 (5): 1104–1107. doi: https://doi.org/10.1645/GE-712R.1
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
EVALUATION OF PELIBUEY LAMBS BORN TO MOTHERS PHENOTYPICALLY SEGREGATED ACCORDING TO RESISTANCE TO GASTROINTESTINAL NEMATODES IN THE HUMID TROPICS OF MEXICO
Claudia Virginia Zaragoza-Vera, Roberto Gonzalez-Garduño, Maritza Zaragoza-Vera, Guadalupe Arjona-Jimenez, Antonio Ortega-Pacheco, Oswaldo Margarito Torres-Chable
ACCEPTANCE OF THE 2022 CLARK P. READ MENTOR AWARD: MENTORING BY DESIGN
Richard E. Clopton