Ixodes philipi ticks were collected from the nest burrows of streaked shearwaters, Calonectris luecomelas, on 3 different islands of Japan (Awashima: 38°45′N, 139°24′E; Mikurajima: 33°52′N, 139°36′E; and Omorijima: 36°8′N, 133°10′E). The mitochondrial cytochrome oxidase subunit I (COI) gene sequence was determined for each tick. The COI sequences of 9 other ixodid tick species also were determined, and they were used for taxonomic positioning of I. philipi. A metastriata tick, Amblyomma triguttatum, was used as an outgroup reference for the analysis. Phylogenetic examination indicated that the I. philipi ticks are on the branch with Ixodes turdus and Ixodes acutitarsus weakly, and the bootstrap value of this branching was low. Three different analyses, maximum parsimony, genetic distance, and maximum likelihood, support this conclusion. To further refine this analysis, 2,761 base pairs (bp) of sequence, which included the genes for tRNAMet, NADH dehydrogenase subunit 2 (ND2), tRNATrp, tRNACys, tRNATyr, and COI, were determined and compared for 6 I. philipi ticks from the 3 different collection sites. Although a base substitution (T to C in the ND2 gene for an Awashima tick) and 2 transitions (G to A in the COI gene for 1 Omorijima tick) have occurred, the overall sequences were highly conserved. Preserved mitochondrial sequences in the ticks from 3 widely separated locations suggest the possibility of gene flow, which was probably accomplished by migratory seabirds.

You do not currently have access to this content.