Ectoparasites, particularly chewing lice in the Phthiraptera (Insecta), affect the ecology of numerous host species. Most lice are highly host-specific, and there are no documented cases of major increases of chewing lice, within populations, over years. During continuous study from 1987–2005 at upper elevation forests on the island of Hawaii, chewing lice were exceedingly rare and, until 2003, were found in just 2 of 12 species of native and introduced birds. From 2003–2005, there was an explosive increase in the prevalence of chewing lice in all host species. There was no change in humidity, or in behavior of hosts, that could have caused an ecological release of existing lice. Based on reduced fat levels and increases in broken wing and tail feathers for most host species, there was apparently a food limitation that preceded the increase. The increase coincided temporally with detection of a nonnative bird that had recently been found in elevations below the study sites. Although there were isolated sightings of this bird on the study sites, seasonal movements and behavior of some species of native birds could also have allowed greater transmission to study sites. Both prevalence and intensity of infection, indexed by number of body regions parasitized, were lower in native species with greater bill overlap, a character that could help birds control lice. Seasonality of prevalence indicated that low prevalence preceded molt and high prevalence occurred after molting of hosts. The number of major fault bars in wing and tail feathers, a sign of nutritive stress, was correlated with intensity of infection, indicating an indirect cost to the hosts of being parasitized. In addition, birds with lice were less likely to be recaptured than birds without lice.

You do not currently have access to this content.