Abstract

Schistosomiasis, also known as Bilharzia, is an infectious disease caused by several species of Schistosoma. Twenty million individuals suffer severe symptoms and 200,000 people die annually from the disease. The host responds to the presence of S. mansoni by producing reactive oxygen species that cause oxidative stress. We hypothesized that schistosomes produce antioxidants in response to oxidative stress. A known antioxidant protein is methionine sulfoxide reductase (Msr). Methionine residues can be oxidized to methionine sulfoxide in the presence of oxidizing agents, and the process is readily reversed by the action of the Msr system. Two S. mansoni MsrB genes (MsrB1 and MsrB2) were cloned and the recombinant proteins were expressed in bacteria and purified. The S. mansoni MsrB proteins contained the common conserved catalytic-and zinc-coordinating cysteines. Analysis of the proteins showed that both proteins promote the reduction of both free methionine sulfoxide (Met[O]) and dabsyl-Met(O) to free methionine (Met) and dabsyl-Met, respectively, while exhibiting differences in their specific activities toward these substrates. Using real-time polymerase-chain reaction (RT-PCR), both proteins were found to be expressed in all stages of the parasite's life cycle, with the highest level of expression of both proteins in the egg stage. This is the first description of MsrB proteins from a parasite.

You do not currently have access to this content.