Abstract

The persistence of Giardia, Cryptosporidium, Rotavirus, and Adenovirus in samples of raw and treated sewage collected monthly in 2010 at the Biological Wastewater Treatment Plant of Ribeirão Preto, SP, Brazil, was analyzed. The USEPA Method 1623 was used to detect and quantify Giardia and Cryptosporidium. An enzyme immunoassay was carried out to test Rotavirus and Adenovirus antigen optical density (Rotascreen® and Adenoscreen®). The results show a significant decrease in the concentrations of Giardia, Rotavirus and Adenovirus (P < 0.05) and a trend of decreasing Cryptosporidium densities, without statistical significance. Giardia concentrations ranged from 120 to 2,200 cysts/L in raw sewage and from 0.45 to 3.5 cysts/L in treated sewage. Cryptosporidium concentration ranged from undetectable to 28.9 oocysts/L in raw sewage and undetectable to 1.05 oocysts/L in treated sewage. Rotavirus presented absorbance values that ranged from 1.17 ± 0.81 in raw sewage to 0.46 ± 0.32 in treated sewage. Adenovirus, in turn, presented absorbance values of 0.64 ± 0.20 in raw sewage and of 0.45 ± 0.04 in treated sewage. There was no significant seasonal tendency observed in the distribution of protozoa (oo)cysts and in the viral antigen density in the monthly sewage samples during 2010 (P > 0.05). Even though these pathogenic agents decreased after treatment, the remaining loads observed in treated sewage can reach the watercourses receiving it. Giardia, Cryptosporidium, Rotavirus, and Adenovirus are pathogens with very low infectious doses, representing a public health risk especially for vulnerable groups, such as children living near these watercourses and homeless people using this water for various purposes. Studies addressing the environmental persistence of opportunistic pathogens in watercourses are hugely important in the public health sphere, especially in developing countries, where economic, social, cultural, and environmental factors still persist that are favorable to population's exposure to diarrhea-causing agents.

You do not currently have access to this content.