Diseased animals may exhibit behavioral shifts that increase or decrease their probability of being randomly sampled. In harvest-based sampling approaches, animal movements, changes in habitat utilization, changes in breeding behaviors during harvest periods, or differential susceptibility to harvest via behaviors like hiding or decreased sensitivity to stimuli may result in a non-random sample that biases prevalence estimates. We present a method that can be used to determine whether bias exists in prevalence estimates from harvest samples. Using data from harvested mule deer (Odocoileus hemionus) sampled in northcentral Colorado (USA) during fall hunting seasons 1996–98 and Akaike's information criterion (AIC) model selection, we detected within-yr trends indicating potential bias in harvest-based prevalence estimates for chronic wasting disease (CWD). The proportion of CWD-positive deer harvested slightly increased through time within a yr. We speculate that differential susceptibility to harvest or breeding season movements may explain the positive trend in proportion of CWD-positive deer harvested during fall hunting seasons. Detection of bias may provide information about temporal patterns of a disease, suggest biological hypotheses that could further understanding of a disease, or provide wildlife managers with information about when diseased animals are more or less likely to be harvested. Although AIC model selection can be useful for detecting bias in data, it has limited utility in determining underlying causes of bias. In cases where bias is detected in data using such model selection methods, then design-based methods (i.e., experimental manipulation) may be necessary to assign causality.

This content is only available as a PDF.