Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
Availability
1-7 of 7
Edward Dubovi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Wildlife Diseases
Journal of Wildlife Diseases (2021) 57 (2): 393–398.
Published: 19 January 2021
Abstract
ABSTRACT Serum samples of 11 Bengal tigers ( Panthera tigris tigris ) from Chitwan National Park in Nepal, collected between 2011–17, were evaluated for the presence of antibodies to eight diseases commonly investigated in large felids. This initial serologic survey was done to establish baseline information to understand the exposure of Nepal's free-ranging tiger population to these diseases. Tiger serum samples collected opportunistically during encounters such as translocation, human conflict, and injury were placed in cold storage for later use. Frozen serum samples were assessed for feline coronavirus (FCoV), feline immunodeficiency virus, feline leukemia virus, feline herpesvirus (FHV), canine distemper virus, canine parvovirus-2 (CPV-2), leptospirosis (LEP; seven serovars), and toxoplasmosis (TOX). Six tigers were found to be positive for LEP, eight for CPV-2, five for FHV, one for FCoV, and 10 for TOX. Tigers, like other wild felids, have been exposed to these common pathogens, but further research is needed to determine the significance of these pathogens to the Nepali population.
Journal Articles
Journal:
Journal of Wildlife Diseases
Journal of Wildlife Diseases (2020) 57 (2): 264–272.
Published: 21 December 2020
Abstract
ABSTRACT As part of the national recovery effort, endangered black-footed ferrets ( Mustela nigripes ) were reintroduced to the Cheyenne River Sioux Reservation in South Dakota, US in 2000. Despite an encouraging start, numbers of ferrets at the site have declined. In an effort to determine possible causes of the population decline, we undertook a pathogen survey in 2012 to detect exposure to West Nile virus (WNV), canine distemper virus (CDV), plague ( Yersinia pestis ), tularemia ( Francisella tularensis ), and heartworm ( Dirofilaria immitis ) using coyotes ( Canis latrans ) as a sentinel animal. The highest seroprevalence was for WNV with 71% (20/28) of coyotes testing antibody-positive. Seroprevalence of CDV and plague were lower, 27% and 13%, respectively. No evidence of active infection with tularemia or heartworm was seen in the coyotes sampled. As this study did not sample black-footed ferrets themselves, the definitive cause for the decline of this population cannot be determined. However, the presence of coyotes seropositive for two diseases, plague and CDV, lethal to black-footed ferrets, indicated the potential for exposure and infection. The high seroprevalence of WNV in the coyotes indicated a wide exposure to the virus; therefore, exposure of black-footed ferrets to the virus is also likely. Due to the ability of WNV to cause fatal disease in other species, studies may be useful to elucidate the impact that WNV could have on the success of reintroduced black-footed ferrets as well as factors influencing the spread and incidence of the disease in a prairie ecosystem.
Journal Articles
Journal:
Journal of Wildlife Diseases
Journal of Wildlife Diseases (2018) 54 (2): 386–391.
Published: 01 April 2018
Abstract
: Carnivores of Madagascar are at increased risk of extinction due to anthropogenic loss of habitat, hunting, and interactions with introduced carnivores. Interactions between introduced and native animals also present the potential for introduction of pathogens into new geographic areas or host species. Here, we provide serologic data regarding pathogen exposure of domestic and native carnivores from the Betampona Natural Reserve Landscape, a protected area in eastern Madagascar. For the Eupleridae, we found limited evidence of exposure to viruses from domestic animals but greater prevalence for Toxoplasma gondii (39%) and Leptospira interrogans (40%). We also evaluated the associations between the presence of antibodies to selected pathogens and the demographic and spatial variables. We showed that individual characteristics such as sex and species were associated with exposure to T. gondii but not to L. interrogans or canine parvovirus (CPV). Finally, we investigated the spatial structure of pathogen exposure in Betampona and found no evidence of spatial structuring, indicating the absence of hotspots and agent-free refugia for T. gondii , L. interrogans , and CPV in the protected area. Our results may be useful for assessing and monitoring disease risk and for formulating control strategies to minimize the negative impact of exotic species on the endemic carnivores of Madagascar.
Journal Articles
Julie Pomerantz, Fidisoa T. Rasambainarivo, Luke Dollar, Leon Pierrot Rahajanirina, Radosoa Andrianaivoarivelo ...
Journal:
Journal of Wildlife Diseases
Journal of Wildlife Diseases (2016) 52 (3): 544–552.
Published: 01 July 2016
Abstract
Introduced animals impact endemic populations through predation, competition, and disease transmission. Populations of endemic carnivores in Madagascar are declining, and pathogens transmitted from introduced species may further endanger these unique species. We assessed the exposure of introduced and endemic carnivores to common viral and parasitic pathogens in two national parks of Madagascar (Kirindy Mitea National Park and Ankarafantsika National Park) and their neighboring villages. We also identified variables associated with the presence of antibodies to these pathogens in fosa ( Cryptoprocta ferox ). Introduced and endemic species were exposed to canine parvovirus, canine herpesvirus, feline calicivirus, and Toxoplasma gondii . Domestic dogs ( Canis familiaris ) and cats ( Felis catus ) may be sources of infection for these pathogens. Prevalence of antibodies to Toxoplasma in captured fosa was >93%, and adults were more likely to be exposed than immature individuals. Our data provide a basis upon which to evaluate and manage risks of pathogen transmission between species.
Journal Articles
Journal:
Journal of Wildlife Diseases
Journal of Wildlife Diseases (2006) 42 (3): 667–671.
Published: 01 July 2006
Abstract
Serum samples from 14 lions ( Panthera leo ) from Queen Elizabeth National Park, Uganda, were collected during 1998 and 1999 to determine infectious disease exposure in this threatened population. Sera were analyzed for antibodies against feline immunodeficiency virus (FIV), feline calicivirus (FCV), feline herpesvirus 1 (feline rhinotracheitis: FHV1), feline/canine parvovirus (FPV/CPV), feline infectious peritonitis virus (feline coronavirus: FIPV), and canine distemper virus (CDV) or for the presence of feline leukemia virus (FeLV) antigens. Ten lions (71%) had antibodies against FIV, 11 (79%) had antibodies against CDV, 11 (79%) had antibodies against FCV, nine (64%) had antibodies against FHV1, and five (36%) had antibodies against FPV. Two of the 11 CDV-seropositive lions were subadults, indicating recent exposure of this population to CDV or a CDV-like virus. No lions had evidence of exposure to FeLV or FIPV. These results indicate that this endangered population has extensive exposure to common feline and canine viruses.
Journal Articles
Journal:
Journal of Wildlife Diseases
Journal of Wildlife Diseases (2004) 40 (1): 1–10.
Published: 01 January 2004
Abstract
Spotted hyenas ( Crocuta crocuta ) are abundant predators in the Serengeti ecosystem and interact with other species of wild carnivores and domestic animals in ways that could encourage disease transmission. Hyenas also have a unique hierarchical social system that might affect the flow of pathogens. Antibodies to canine distemper virus (CDV), feline immunodeficiency virus (FIV), feline panleukopenia virus/canine parvovirus (FPLV/CPV), feline coronavirus/feline infectious peritonitis virus (FECV/FIPV), feline calicivirus (FCV), and feline herpesvirus 1 (FHV1) have been detected in other Serengeti predators, indicating that these viruses are present in the ecosystem. The purpose of this study was to determine whether spotted hyenas also had been infected with these viruses and to assess risk factors for infection. Serum samples were collected between 1993 and 2001 from 119 animals in a single clan for which behavioral data on social structure were available and from 121 hyenas in several other clans. All animals resided in the Masai Mara National Reserve. Antibodies to CDV, FIV, FPLV/CPV, FECV/FIPV, FCV, and FHV1 were present in 47%, 35%, 81%, 36%, 72%, and 0.5% of study hyenas, respectively. Antibody prevalence was greater in adults for FIV and FECV/FIPV, and being a female of high social rank was a risk factor for FIV. Hyenas near human habitation appeared to be at lower risk to have CDV, FIV, and FECV/FIPV antibodies, whereas being near human habitation increased the risk for FPLV/CPV antibodies. Canine distemper virus and FECV/FIPV antibody prevalence varied considerably over time, whereas FIV, FPLV/CPV, and FCV had a stable, apparently endemic temporal pattern. These results indicate that hyenas might play a role in the ecology of these viruses in the Serengeti ecosystem. The effect of these viruses on hyena health should be further investigated. The lower prevalence of CDV antibody–positive hyenas near human habitation suggests that reservoirs for CDV other than domestic dogs are present in the Serengeti ecosystem.
Journal Articles
Journal:
Journal of Wildlife Diseases
Journal of Wildlife Diseases (2004) 40 (1): 23–31.
Published: 01 January 2004
Abstract
Cheetahs ( Acinonyx jubatus ) in captivity have unusually high morbidity and mortality from infectious diseases, a trait that could be an outcome of population homogeneity or the immunomodulating effects of chronic stress. Free-ranging Namibian cheetahs share ancestry with captive cheetahs, but their susceptibility to infectious diseases has not been investigated. The largest remaining population of free-ranging cheetahs resides on Namibian farmlands, where they share habitat with domestic dogs and cats known to carry viruses that affect cheetah health. To assess the extent to which free-ranging cheetahs are exposed to feline and canine viruses, sera from 81 free-ranging cheetahs sampled between 1992 and 1998 were evaluated for antibodies against canine distemper virus (CDV), feline coronavirus (feline infectious peritonitis virus; FCoV/FIPV), feline herpesvirus 1 (FHV1), feline panleukopenia virus (FPV), feline immunodeficiency virus (FIV), and feline calicivirus (FCV) and for feline leukemia virus (FeLV) antigens. Antibodies against CDV, FCoV/FIPV, FHV1, FPV, and FCV were detected in 24, 29, 12, 48, and 65% of the free-ranging population, respectively, although no evidence of viral disease was present in any animal at the time of sample collection. Neither FIV antibodies nor FeLV antigens were present in any free-ranging cheetah tested. Temporal variation in FCoV/FIPV seroprevalence during the study period suggested that this virus is not endemic in the free-ranging population. Antibodies against CDV were detected in cheetahs of all ages sampled between 1995 and 1998, suggesting the occurrence of an epidemic in Namibia during the time when CDV swept through other parts of sub-Saharan Africa. This evidence in free-ranging Namibian cheetahs of exposure to viruses that cause severe disease in captive cheetahs should direct future guidelines for translocations, including quarantine of seropositive cheetahs and preventing contact between cheetahs and domestic pets.