To evaluate the effect of combining camphorquinone (CQ) and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) on the depth of cure and polymerization shrinkage stress of bulk-fill composites.

Methods and Materials:

Experimental bulk-fill composites were produced containing equal molar concentrations of either CQ-amine or CQ-amine/TPO. The degree of in-depth conversion through each millimeter of a 4-mm-thick bulk-fill increment was evaluated by Fourier transform near-infrared microspectroscopy using a central longitudinal cross section of the increment of each bulk-fill composite (n=3). Light-transmittance of the multi-wave light-emitting diode (LED) emittance used for photoactivation (Bluephase G2, Ivoclar Vivadent) was recorded through every millimeter of each bulk-fill composite using spectrophotometry. The volumetric shrinkage and polymerization shrinkage stress were assessed using a mercury dilatometer and the Bioman, respectively. The flexural modulus was also assessed by a three-point bend test as a complementary test. Data were analyzed according to the different experimental designs (α=0.05 and β=0.2).


Up to 1 mm in depth, adding TPO to CQ-based bulk-fill composites increased the degree of conversion, but beyond 1 mm no differences were found. The light-transmittance of either wavelengths emitted from the multi-wave LED (blue or violet) through the bulk-fill composites were only different up to 1 mm in depth, regardless of the photoinitiator system. Adding TPO to CQ-based bulk-fill composites did not affect volumetric shrinkage but did increase the flexural modulus and polymerization shrinkage stress.


Adding TPO to CQ-based bulk-fill composites did not increase the depth of cure. However, it did increase the degree of conversion on the top of the restoration, increasing the polymerization shrinkage stress.

You do not currently have access to this content.