SUMMARY

Objective:

Our objective was to investigate the influence of different curing distances on microflexural strength and the microflexural modulus of two resin-based composites.

Methods:

Two nanohybrid composites were used; Filtek Z250 (Z250) and Tetric EvoCeram (TEC). Rectangular specimens were prepared (2-mm wide × 1-mm deep × 6-mm long) light cured according to the manufacturer's instructions at 0-mm, 2-mm, and 8-mm distances (n=10) and were stored wet at 37°C for 24 hours. A microflexural strength test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The microflexural strength and microflexural modulus data were analyzed using a two-way analysis of variance followed by a Tukey multiple comparison post hoc test (α=0.05).

Results:

The TEC composite had a significantly higher microflexural strength at an 8-mm distance compared with the 0-mm distance. The Z250 composite expressed significantly higher microflexural strength, at 2-mm and 8-mm compared with the 0-mm distance. TEC showed a significantly higher microflexural modulus at an 8-mm distance compared with the 0-mm and 2-mm distances. Z250 also exhibited a significantly higher microflexural modulus at the 2-mm distance, compared with the 8-mm distance. In total, Z250 presented a significantly higher microflexural strength and modulus compared with TEC.

Conclusion:

Curing the explored composites at 2-mm or 8-mm distances from the specimen surface did not have a significant influence on microflexural strength but did significantly affect the microflexural modulus.

You do not currently have access to this content.