Clinical Relevance

Pigments in tooth structures affect the diffusion of H2O2 through enamel and dentin. The bleaching methodology can be impacted.



The aim of this study was to evaluate the influence of the presence of pigments in tooth structures on the trans-enamel and trans-dentin diffusion of hydrogen peroxide (H2O2) and its cytotoxicity after carrying out an in-office bleaching therapy.

Methods and Materials:

A bleaching gel with 35% H2O2 was applied for 45 minutes (three times for 15 minutes) on enamel and dentin discs (n=6), either previously submitted to the intrinsic pigmentation protocol with a concentrated solution of black tea, or not, defining the following groups: G1, unbleached untreated discs (control 1); G2, unbleached pigmented discs (control 2); G3, bleached untreated discs; G4, bleached pigmented discs. The discs were adapted to artificial pulp chambers, which were placed in wells of 24-well plates containing 1 mL culture medium (Dulbecco's modified Eagle's medium [DMEM]). After applying the bleaching gel on enamel, the extracts (DMEM + components of bleaching gel that diffused through the discs) were collected and then applied on the cultured MDPC-23 odontoblast-like cells. Cell viability (methyl tetrazolium assay and Live & Dead, Calcein AM, and ethidium homodimer-1 [EthD-1] probes), the amount of H2O2 that diffused through enamel and dentin (leuco-crystal violet product), and the H2O2-mediated oxidative cell stress (SOx) and components of degradation were assessed (analysis of variance/Tukey; α=0.05).


There was no significant difference between the groups G1 and G2 for all the parameters tested (p>0.05). Reduction in the trans-enamel and trans-dentin diffusion of H2O2 occurred for G4 in comparison with G3. Significantly lower cell viability associated with greater oxidative stress was observed for G3 (p<0.05). Therefore, in-office tooth bleaching therapy performed in pigmented samples caused lower cytotoxic effects compared with untreated samples submitted to the same esthetic procedure (p<0.05).


According to the methodology used in this investigation, the authors concluded that the presence of pigments in hard tooth structures decreases the trans-enamel and trans-dentin diffusion of H2O2 and the toxicity to pulp cells of an in-office bleaching gel with 35% H2O2.

This content is only available as a PDF.
You do not currently have access to this content.