In the current study, scleractinian corals from the Albian (uppermost Lower Cretaceous; 112.6–99.7 Ma) including 337 species (280 taxa assigned to species; 57 taxa kept in open nomenclature) from 147 genera (six of which include subgenera) belonging to 42 families (two of which include subfamilies; and incertae sedis) are evaluated and revised. Two new species (Apoplacophyllia asiatica, new species and Trigerastraea sikharulidzeae, new species) are described and two lectotypes are designated. Some specimens are illustrated for the first time, and new material (from Austria) is presented. The coral material includes records from 30 regions in Africa, the Americas, the Arctic, Asia, Australasia, and Europe. The most extensive records of Albian corals are from tropical/subtropical and arid areas, including the U.S.A., Mexico, Greece, France, and Spain. Over three-quarters of the Albian taxa belong to morphological forms having little to no hermatypic character (sensu Coates & Oliver), including species of the cerioid-plocoid group (genera: 36.7%; species: 38.5%), solitary taxa (genera: 26.5%; species: 28%), and branching forms (genera: 26.5%; 39 species = 11.5%). The coral faunas of the Albian are dominated by corals of “modern” microstructural groups sensu Roniewicz & Morycowa (76 genera = 51.7%; 169 species = 50.1%). Compared to the lowermost Cretaceous (Berriasian), which showed that 91% of the species and 83% of the genera belonged to previously established microstructural groups, the Lower Cretaceous ends with “modern” groups having become dominant. During the lower and middle Albian, the vast majority of taxa belonged to colonial forms (both 74%). A shift took place during the upper Albian, significantly increasing the number of solitary species to over 40% of the Albian fauna (42.9%). Throughout the Albian, the most diverse coral assemblages include non-reefal faunas, suggesting that, in contrast to, e.g., the Barremian–Aptian time period, reefal developments were less crucial for coral recruitment during this time. This study of the Albian fauna was used as the basis for synthesizing classical taxonomic works with modern microstructural data and recent DNA analyses in order to propose both a modified taxonomic framework and a working hypothetical phylogenetic tree for 41 scleractinian families occurring in the fossil record.

In contrast to the coral facies of the time period preceding the Albian (Barremian–Aptian) that was marked by coral-reef development (Baron-Szabo 2021, and references therein), the Albian coral faunas are characterized mainly by non-reefal coral associations (e.g., Wells 1932, 1933; Alloiteau 1958, Reyeros de Castillo 1983, Baron-Szabo 1993, Morycowa & Marcopoulou-Diacantoni 2002, Turnšek et al. 2003, Baron-Szabo et al. 2010, Jell et al. 2011, Baron-Szabo 2018a) (Supplemental Appendix 1). For this time period, the most diverse coral-reef assemblages (up to 37 species) occurred in a rather small number of areas such as, e.g., Mexico (Baron-Szabo & González-León 1999, 2003), France (Löser 2013), the U.S.A. (Wells 1932, 1933), Georgia (Caucasus) (Sikharulidze 1979), and Spain (Baron-Szabo & Fernández-Mendiola 1997). In contrast, non-reefal coral assemblages were recorded from locations worldwide, including Greenland (Donovan 1949), the U.S.A. (Wells 1932, 1933), New Zealand (Squires 1958), Madagascar (Alloiteau 1958), Egypt (Aboul Ela et al. 1991), Greece (Morycowa & Marcopoulou-Diacantoni 2002), Austria (Baron-Szabo 2018a), Switzerland (Baron-Szabo 2018a, Baron-Szabo & Furrer, 2018), and others, some of which with a greater taxonomic diversity than the reefal associations (e.g., the fauna of Greece, 48 species, Morycowa & Marcopoulou-Diacantoni 2002, current study) (Supplemental Appendix 2).

According to the model of evolution of scleractinian corals based on microstructural data (Roniewicz & Morycowa 1993), the Albian represents the final stage of Phase 1 of the “Late Mesozoic stage (Hauterivian–Albian).” This stage is characterized by a general decrease of Jurassic relict lines and certain innovations in both hermatypic and ahermatypic corals. With regard to hermatypic scleractinians, changes took place, including 1) the occurrence of both a new type of septal microstructure in faviid-related stems (=minitrabecular portions and compound trabeculae); 2) new colony types, including hydnophoroid and meandroid forms lacking any traces of individual calices; and 3) diversification of thick- and minitrabeculae lines. As for ahermatypic coral faunas, a significant diversification of caryophylliid forms took place, including the development of both extant genera (e.g., Caryophyllia) and new lines of ahermatypic corals [e.g., flabellid types; Stolarski 1991, Roniewicz & Morycowa 1993, Roniewicz & Stolarski 1999, (Figs. 1, 2)].

Fig. 1.

Types of skeletal elements and microstructure. A, Development of pennulae, typical of families such as Comoseriidae, Cunnolitidae, Latomeandridae, and Synastreidae; irregularly occurring in families such as Acrosmiliidae and Agariciidae; B, types of septal porosity and pennulae typical of the family Comoseriidae; C, types of septal porosity and pennulae typical of the family Latomeandridae; D, developments of septal arrangement and axial ends of septa (terminating in auriculae) typically seen in the families Cladophylliidae and Stylinidae; E, cross section of septum, showing stylinid type of microstructure; trabeculae generally belonging to mini- to medium-size groups; F, cross section of septum, showing cladophylliid type of microstructure; trabeculae in mini- to medium-size ranges (often less than 60 μm); G, septal arrangement in Pourtalès plan (=characteristic of the family Dendrophylliidae) compared to the septal arrangement in non-dendrophylliid groups; H, cross section of septum, showing aplosmiliid type of microstructure; trabeculae in mini- to medium-size ranges; I, cross section of septum, showing thecosmiliid type of microstructure; trabeculae belong to the large-size group (200 μm up to around 1300 μm); J, cross section of septum, showing haplaraeid type of microstructure; trabeculae belong to the medium- to lower large-size groups (up to around 200 μm); K, non-trabecular microstructure corresponding to the kind seen in the Cyathophoridae, consisting of fibers arranged in bundles (1) or scales (2); L, cross view of septum, showing caryophylliid type of microstructure; trabeculae are densely packed, arranged in a mid-septal zig-zag-line; trabeculae mainly in the small- (rarely medium-) size group (generally up 50 μm, rarely up to 100 μm); M, corallite of the heterocoeniid type with horizontal rows of trabeculae forming the corallite wall; N, lateral view of a dermosmiliid septum; trabeculae are arranged in a divergent zig-zag-line; O, cross section of actinastreid-type septa, showing densely packed trabeculae; P, cross section of septum, showing gardineriid type of microstructure; trabeculae are densely packed, arranged in a rather straight mid-septal line; trabeculae mainly range in the small- (rarely medium-) size group (generally up 50 μm, rarely up to 100 μm); Q, cross section of eugyrid-type septa; R, ultrastructure of faviid septum (Favia fragum) in cross-section, showing fibers and calcification centers (1, SEM-photomosaic and 2, sketch of 1). Abbreviations: S1, S2, etc., septa of first cycle/order, second cycle/order, etc.; d.t., divergent trabeculae; l.t., lateral trabeculae; m.t., main trabeculae. Sources of images: A, modified from Gill & Coates 1977, Baron-Szabo 2003; B, C, modified from Morycowa & Roniewicz 1995; D, modified from Gill 1977; E, H, I, J, N, modified from Roniewicz 1996; F, modified from Morycowa & Roniewicz 1990; G, modified from Cairns 2001; K, modified from Roniewicz & Morycowa 1989; L, P, modified from Stolarski 1996; M, O, modified from Morycowa 1971; Q, modified from Morycowa 1997; R, modified from Cuif & Perrin 1999.

Fig. 1.

Types of skeletal elements and microstructure. A, Development of pennulae, typical of families such as Comoseriidae, Cunnolitidae, Latomeandridae, and Synastreidae; irregularly occurring in families such as Acrosmiliidae and Agariciidae; B, types of septal porosity and pennulae typical of the family Comoseriidae; C, types of septal porosity and pennulae typical of the family Latomeandridae; D, developments of septal arrangement and axial ends of septa (terminating in auriculae) typically seen in the families Cladophylliidae and Stylinidae; E, cross section of septum, showing stylinid type of microstructure; trabeculae generally belonging to mini- to medium-size groups; F, cross section of septum, showing cladophylliid type of microstructure; trabeculae in mini- to medium-size ranges (often less than 60 μm); G, septal arrangement in Pourtalès plan (=characteristic of the family Dendrophylliidae) compared to the septal arrangement in non-dendrophylliid groups; H, cross section of septum, showing aplosmiliid type of microstructure; trabeculae in mini- to medium-size ranges; I, cross section of septum, showing thecosmiliid type of microstructure; trabeculae belong to the large-size group (200 μm up to around 1300 μm); J, cross section of septum, showing haplaraeid type of microstructure; trabeculae belong to the medium- to lower large-size groups (up to around 200 μm); K, non-trabecular microstructure corresponding to the kind seen in the Cyathophoridae, consisting of fibers arranged in bundles (1) or scales (2); L, cross view of septum, showing caryophylliid type of microstructure; trabeculae are densely packed, arranged in a mid-septal zig-zag-line; trabeculae mainly in the small- (rarely medium-) size group (generally up 50 μm, rarely up to 100 μm); M, corallite of the heterocoeniid type with horizontal rows of trabeculae forming the corallite wall; N, lateral view of a dermosmiliid septum; trabeculae are arranged in a divergent zig-zag-line; O, cross section of actinastreid-type septa, showing densely packed trabeculae; P, cross section of septum, showing gardineriid type of microstructure; trabeculae are densely packed, arranged in a rather straight mid-septal line; trabeculae mainly range in the small- (rarely medium-) size group (generally up 50 μm, rarely up to 100 μm); Q, cross section of eugyrid-type septa; R, ultrastructure of faviid septum (Favia fragum) in cross-section, showing fibers and calcification centers (1, SEM-photomosaic and 2, sketch of 1). Abbreviations: S1, S2, etc., septa of first cycle/order, second cycle/order, etc.; d.t., divergent trabeculae; l.t., lateral trabeculae; m.t., main trabeculae. Sources of images: A, modified from Gill & Coates 1977, Baron-Szabo 2003; B, C, modified from Morycowa & Roniewicz 1995; D, modified from Gill 1977; E, H, I, J, N, modified from Roniewicz 1996; F, modified from Morycowa & Roniewicz 1990; G, modified from Cairns 2001; K, modified from Roniewicz & Morycowa 1989; L, P, modified from Stolarski 1996; M, O, modified from Morycowa 1971; Q, modified from Morycowa 1997; R, modified from Cuif & Perrin 1999.

Close modal
Fig. 2.

Growth forms of solitary corals and types of corallite integration in colonial corals (modified from Errenst 1990, Baron-Szabo & Furrer 2018). For examples of various morphological types in Albian corals see Figs. 6, 7.

Fig. 2.

Growth forms of solitary corals and types of corallite integration in colonial corals (modified from Errenst 1990, Baron-Szabo & Furrer 2018). For examples of various morphological types in Albian corals see Figs. 6, 7.

Close modal

The purpose of this paper is to provide a comprehensive evaluation of Albian scleractinians with regard to both their taxonomic assignment and paleogeographic distribution and to use the information as the basis for synthesizing classical taxonomic works with both modern microstructural data and recent DNA analyses in order to propose both a modified taxonomic framework and a working hypothetical phylogenetic tree for 41 scleractinian families occurring in the fossil record (Fig. 3).

Fig. 3.

Hypothetical phylogenetic tree of scleractinian corals occurring during the Lower Cretaceous (modified from Roniewicz & Morycowa 1989, 1993, Stolarski 1996, Roniewicz & Stolarski 1999, Baron-Szabo 2006, 2008; Budd et al. 2012, Huang et al. 2014a, b; Morycowa & Roniewicz 1990, 1995, 2016; Kitahara et al. 2016, and new herein). Abbreviations: Alb, Albian; Apt, Aptian; Barr, Barremian; Berr, Berriasian; Ca, Campanian; Cen, Cenomanian; Con, Coniacian; Dan, Danian; Eo, Eocene; Haut, Hauterivian; Maast, Maastrichtian; Mio, Miocene; Oligo, Oligocene; Pal, Paleocene: Q, Quaternary; Sa, Santonian; Ter, Tertiary; Tur, Turonian; Val, Valanginian.

Fig. 3.

Hypothetical phylogenetic tree of scleractinian corals occurring during the Lower Cretaceous (modified from Roniewicz & Morycowa 1989, 1993, Stolarski 1996, Roniewicz & Stolarski 1999, Baron-Szabo 2006, 2008; Budd et al. 2012, Huang et al. 2014a, b; Morycowa & Roniewicz 1990, 1995, 2016; Kitahara et al. 2016, and new herein). Abbreviations: Alb, Albian; Apt, Aptian; Barr, Barremian; Berr, Berriasian; Ca, Campanian; Cen, Cenomanian; Con, Coniacian; Dan, Danian; Eo, Eocene; Haut, Hauterivian; Maast, Maastrichtian; Mio, Miocene; Oligo, Oligocene; Pal, Paleocene: Q, Quaternary; Sa, Santonian; Ter, Tertiary; Tur, Turonian; Val, Valanginian.

Close modal

Material included in the current study was derived from beds having stratigraphic ranges clearly defined as Albian and from works in which descriptions or illustrations of the coral material were provided (see references in Supplemental Appendix 2 and references marked with * in the Literature Cited). Works in which the stratigraphic ranges of the coral-bearing strata are not clearly defined but given as, e.g., Aptian–Albian, Albian–Cenomanian, etc., or in which material was listed but identifications have not been confirmed in subsequent works, are excluded from the current study (e.g., Kossmat 1907 [Albian–Cenomanian of Yemen]), Lowenstam 1942 [upper Albian–lower Cenomanian of Israel], Eguchi 1951 [Aptian–Albian of Japan], Baron-Szabo et al. 2003, Pandey et al. 2007 [Aptian–Albian of Iran].

Material discussed in the current work includes specimens from the following institutions:

  • MNHN Museum National d'Histoire Naturelle, Paris, France

  • NHMUK The Natural History Museum London, UK

  • NHMW Naturhistorisches Museum Wien, Österreich (Natural History Museum Vienna, Austria).

  • NIGP Academia Sinica, Nanjing Institute of Geology and Palaeontology Nanjing, China.

  • NM Národni Muzeum, Praha, Czech Republic.

  • SMF Forschungsinstitut Senckenberg, Senckenberg Museum, Frankfurt/Main, Germany.

  • SNSB-BSPG Bayerische Staatssammlung für Paläontologie und historische Geologie, Munich, Germany.

  • TMM Texas Memorial Museum, Austin, Texas, U.S.A.

Over 470 records of scleractinian corals from 30 regions were evaluated (Figs. 4, 5, Tables 13, Supplemental Appendices 18) and arranged in a taxonomic framework (Table 4).

Fig. 4.

Simplified global map indicating the localities where Albian species were found. Shown are the locality numbers corresponding to those in Table 1.

Fig. 4.

Simplified global map indicating the localities where Albian species were found. Shown are the locality numbers corresponding to those in Table 1.

Close modal
Fig. 5.

Simplified Lower Cretaceous paleogeographic map indicating the localities where Albian species were found. Shown are the locality numbers corresponding to those in Table 1 (Paleomap modified from Paleomap project Scotese [2014] at www.scotese.com; last accessed 16 September 2021; Tennant et al. 2017, Baron-Szabo 2021).

Fig. 5.

Simplified Lower Cretaceous paleogeographic map indicating the localities where Albian species were found. Shown are the locality numbers corresponding to those in Table 1 (Paleomap modified from Paleomap project Scotese [2014] at www.scotese.com; last accessed 16 September 2021; Tennant et al. 2017, Baron-Szabo 2021).

Close modal
Table 1.

List of Albian localities from which the coral material was collected. Coordinates and paleocoordinates representative of distributional patterns are from Paleobiology Database (paleobiodb.org; see there for more details on individual sites) and (*) are estimated using the information of the Paleomap project Scotese (2014) at www.scotese.com, Vérard et al. 2017, and Tennant et al. 2017.

List of Albian localities from which the coral material was collected. Coordinates and paleocoordinates representative of distributional patterns are from Paleobiology Database (paleobiodb.org; see there for more details on individual sites) and (*) are estimated using the information of the Paleomap project Scotese (2014) at www.scotese.com, Vérard et al. 2017, and Tennant et al. 2017.
List of Albian localities from which the coral material was collected. Coordinates and paleocoordinates representative of distributional patterns are from Paleobiology Database (paleobiodb.org; see there for more details on individual sites) and (*) are estimated using the information of the Paleomap project Scotese (2014) at www.scotese.com, Vérard et al. 2017, and Tennant et al. 2017.
Table 2.

Taxonomic affinities of the five most species-rich Albian assemblages, including those of the USA (91 species), Mexico (67 species), Greece (60 species), France (48 species), and Spain (29 species), using the Jaccard index (=number of shared species, divided by total number of species in two localities).

Taxonomic affinities of the five most species-rich Albian assemblages, including those of the USA (91 species), Mexico (67 species), Greece (60 species), France (48 species), and Spain (29 species), using the Jaccard index (=number of shared species, divided by total number of species in two localities).
Taxonomic affinities of the five most species-rich Albian assemblages, including those of the USA (91 species), Mexico (67 species), Greece (60 species), France (48 species), and Spain (29 species), using the Jaccard index (=number of shared species, divided by total number of species in two localities).
Table 3.

Taxonomic affinities of the five most genus-rich Albian assemblages, including those of the USA (51 genera), Mexico (47 genera), Greece (41 genera), France (32 genera), and Spain (25 genera), using the Jaccard index (=number of shared genera, divided by total number of genera in two localities). [number] = number of shared genera.

Taxonomic affinities of the five most genus-rich Albian assemblages, including those of the USA (51 genera), Mexico (47 genera), Greece (41 genera), France (32 genera), and Spain (25 genera), using the Jaccard index (=number of shared genera, divided by total number of genera in two localities). [number] = number of shared genera.
Taxonomic affinities of the five most genus-rich Albian assemblages, including those of the USA (51 genera), Mexico (47 genera), Greece (41 genera), France (32 genera), and Spain (25 genera), using the Jaccard index (=number of shared genera, divided by total number of genera in two localities). [number] = number of shared genera.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Table 4.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.

Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Albian coral genera arranged according to family assignment (families are in alphabetical order), types of corallite integration, and references used for information regarding genus concept. Types of corallite integration: b, branching group; cp, cerioid-plocoid group; hmt, (hydno-) meandroid-thamnasterioid group; s, solitary (no corallite integration); * previously (** potentially previously) established microstructural group.
Fig. 6.

A, F, G, Trigerastraea sikharulidzeae, new species, holotype SMF 75536, lower Albian of France; A, longitudinal view of cerioid to cerio-submeandroid colony, slightly oblique, thin section; scale bar = 5 mm; F, close-up of G; scale bar = 3.5 mm; G, calicular view of colony, thin section; scale bar = 14 mm; B, C, Bathycyathus androiavensis (Alloiteau, 1936), MNHN.F.M05216, lectotype designated herein (images from website “colhelper.mnhn.fr” Permission to use these images granted by Sylvain Charbonnier, Natural History Museum, Paris, August, 2020); Albian of Madagascar; B, calicular view of solitary corallum; scale bar = 5 mm; C, longitudinal view of turbinate corallum; scale bar = 5 mm; D, E, Podoseris mammiliformisDuncan, 1869, middle to upper Albian of England (Norfolk); D, NHMUK R.50454 (18233), calicular view of solitary (cupolate) corallum; scale bar = 4 mm; E, NHMUK R.50454 (18235), calicular view of solitary (subtympanoid) corallum; scale bar = 3 mm.

Fig. 6.

A, F, G, Trigerastraea sikharulidzeae, new species, holotype SMF 75536, lower Albian of France; A, longitudinal view of cerioid to cerio-submeandroid colony, slightly oblique, thin section; scale bar = 5 mm; F, close-up of G; scale bar = 3.5 mm; G, calicular view of colony, thin section; scale bar = 14 mm; B, C, Bathycyathus androiavensis (Alloiteau, 1936), MNHN.F.M05216, lectotype designated herein (images from website “colhelper.mnhn.fr” Permission to use these images granted by Sylvain Charbonnier, Natural History Museum, Paris, August, 2020); Albian of Madagascar; B, calicular view of solitary corallum; scale bar = 5 mm; C, longitudinal view of turbinate corallum; scale bar = 5 mm; D, E, Podoseris mammiliformisDuncan, 1869, middle to upper Albian of England (Norfolk); D, NHMUK R.50454 (18233), calicular view of solitary (cupolate) corallum; scale bar = 4 mm; E, NHMUK R.50454 (18235), calicular view of solitary (subtympanoid) corallum; scale bar = 3 mm.

Close modal
Fig. 7.

A, Truncoconus inclinatus Turnšek inTurnšek & Mihajlović, 1981, SMF 75573, lower Albian of France, calicular view of solitary corallum, thin section; scale bar = 6 mm; B, G, Antiguastrea jacobiAlloiteau, 1948, MNHN.F.R.10907, holotype (images from website “colhelper.mnhn.fr” Permission to use these images granted by Sylvain Charbonnier, Natural History Museum, Paris, August, 2020), Albian of France; B, calicular view of plocoid colony; scale bar = 25.5 mm; G, close-up of Fig. B; scale bar = 5.5 mm; C, D, Ahrdorffia vaughani (Wells, 1932), SMF 75518, lower Albian of France; C, calicular view of thamnasterioid colony, thin section; scale bar = 5 mm; D, close-up Fig. C; scale bar = 2 mm; E, H, Cladophyllia stewartaeWells, 1944, VNS-P.27024, first time report of new material from the lower Albian of Austria (Garschella Formation at Sattelalpe, east of Ebniterach), images courtesy of Michael Ricker, Senckenberg, Frankfurt, Germany; E, calicular view of branching (dendroid to subphaceloid) colony, thin section; scale bar = 5.5 mm; H, close-up of Fig. E; scale bar = 2.5 mm; F, Diplogyra lamellosa eguchiiMorycowa, 1971, SMF 75573, lower Albian of France, calicular view of meandroid colony, thin section; scale bar = 4 mm; I, Enallhelia cf. tubulosaBecker, 1875, VNS-P.25401, lower Albian of Austria, lateral view of dendroid (-sympodial) colony, preserved either as “steinkern” or as mould; scale bar = 8 mm.

Fig. 7.

A, Truncoconus inclinatus Turnšek inTurnšek & Mihajlović, 1981, SMF 75573, lower Albian of France, calicular view of solitary corallum, thin section; scale bar = 6 mm; B, G, Antiguastrea jacobiAlloiteau, 1948, MNHN.F.R.10907, holotype (images from website “colhelper.mnhn.fr” Permission to use these images granted by Sylvain Charbonnier, Natural History Museum, Paris, August, 2020), Albian of France; B, calicular view of plocoid colony; scale bar = 25.5 mm; G, close-up of Fig. B; scale bar = 5.5 mm; C, D, Ahrdorffia vaughani (Wells, 1932), SMF 75518, lower Albian of France; C, calicular view of thamnasterioid colony, thin section; scale bar = 5 mm; D, close-up Fig. C; scale bar = 2 mm; E, H, Cladophyllia stewartaeWells, 1944, VNS-P.27024, first time report of new material from the lower Albian of Austria (Garschella Formation at Sattelalpe, east of Ebniterach), images courtesy of Michael Ricker, Senckenberg, Frankfurt, Germany; E, calicular view of branching (dendroid to subphaceloid) colony, thin section; scale bar = 5.5 mm; H, close-up of Fig. E; scale bar = 2.5 mm; F, Diplogyra lamellosa eguchiiMorycowa, 1971, SMF 75573, lower Albian of France, calicular view of meandroid colony, thin section; scale bar = 4 mm; I, Enallhelia cf. tubulosaBecker, 1875, VNS-P.25401, lower Albian of Austria, lateral view of dendroid (-sympodial) colony, preserved either as “steinkern” or as mould; scale bar = 8 mm.

Close modal

Because of the fact that in some areas coral research has been carried out for over 1½ centuries (e.g., England: Milne Edward & Haime 1848a, b; Duncan 1869, 1870, 1879, 1884, 1889; Tomes 1885, Lang 1909, Casey 1961, Baron-Szabo 2013, Baron-Szabo et al. 2010; U.S.A.: Roemer 1849, 1888, Wells 1932, 1933, 1947, 1973; Jacka & Brand 1977, Hartshorne 1989, Scott 1997, Kennedy et al. 1998, Turnšek et al. 2003, Scott et al. 2007), whereas in other regions sampling effort was very low to nearly non-existent (e.g., Greenland, Poland, South Africa; Supplemental Appendix 2), no conclusions can be reached regarding species diversity between sites. Furthermore, stratigraphic resolution differs significantly between individual locations. More precise ages (lower, middle, upper Albian) are available for some coral occurrences (e.g., Austria, England, France, Mexico, U.S.A.), whereas for other regions stratigraphic resolution has been less precise (e.g., Georgia [Caucasus], Greece, Madagascar). In order to provide general information with regard to similarities between coral faunas and distributional pattern during the Albian, the genus distribution during the Albian is given (Supplemental Appendix 3), paleogeographic distribution of scleractinian coral species occurring in more than one area during the Albian is listed (Supplemental Appendix 4), and the five most diverse coral assemblages recorded for the Albian are compared, including the faunas from the U.S.A. (51 genera, 91 species), Mexico (47 genera, 67 species), Greece (41 genera, 60 species), France (32 genera, 48 species), and Spain (25 genera, 29 species) (Tables 2, 3). In addition, in order to provide an idea about possible trends with regard to distributional patterns and coral diversity during various stages of the Albian, coral assemblages derived from more precisely dated collecting sites are provided, including 118 records from the lower Albian, 86 records from the middle Albian, and 82 records from the upper Albian (Supplemental Appendices 57).

A total of 337 taxa belonging to 147 genera and 42 families are recognized from 30 Albian regions worldwide (280 species determined, 57 taxa kept in open nomenclature). The vast majority of the taxa belong to colonial forms (108 genera = 73.5%; 243 species = 72%) (Table 4, Supplemental Appendices 2, 8).

Most of the Albian taxa belong to the cerioid-plocoid group (54 genera = 36.7%; 130 species = 38.5%), followed by solitary forms (39 genera = 26.5%; 94 species = 28%), corals having (hydno-) meandroid-thamnasterioid corallite integration (35 genera = 23.8%; 74 species = 22%), and corals belonging to the branching group (19 genera = 13%; 39 species = 11.5%) (Supplemental Appendix 8).

With regard to corallite size, 324 taxa were included in the evaluation (13 species were left out due to the lack of sufficient information) (Supplemental Appendix 2). In the Albian corals, corallite diameters range from less than 1 mm (e.g., Heterocoenia minuta) to over 60 mm (Aulastraeopora harrisi) (Supplemental Appendix 2) and fall into three major corallite-size groups: small (up to 2.5 mm), medium (>2.5–9.5 mm), and large (>9.5 mm). The Albian corals, however, are distinctly dominated by forms with medium-size corallites (173 species = 53.4%), followed by forms having large-size corallites (92 species = 28.4%) and small-corallite corals (59 species = 18.2%). According to Coates & Oliver (1973), the occurrence of scleractinians with highly integrated corallites (i.e., hydnophoroid, thamnasterioid, meandroid types) underscores the hermatypic character of coral assemblages. Recent zooxanthellate coral faunas are dominated by high-integrated species belonging mainly to two groups of corallite sizes: corals having corallite diameters of 1–5 mm (most common) and 5–10 mm, whereas corals characterized by larger corallites and low corallite integration are less common (Coates & Jackson 1987). With regard to both corallite size and type of integration, the Albian fauna shows little correspondence to Recent zooxanthellate assemblages: Albian corals belonging to species having little or no type of corallite integration (cerioid-plocoid [130 species] and solitary [94 species] categories) form the most dominant group.

Based on the model of evolution of scleractinian corals using microstructural data (Roniewicz & Morycowa 1993), the coral faunas of the Albian are dominated by corals of “modern” microstructural groups (76 genera = 51.7%; 169 species = 50.1%) (Table 4, Supplemental Appendix 2). Compared to the situation of the lowermost Cretaceous (Berriasian), which showed that 91% of the species and 83% of the genera belonged to previously established microstructural groups (Baron-Szabo 2018b), the Lower Cretaceous ends with “modern” groups having become dominant.

The most extensive records of Albian corals are from tropical/subtropical and arid areas, including the U.S.A. (51 genera, 91 species), Mexico (47 genera, 67 species), Greece (41 genera, 60 species), France (32 genera, 48 species), and Spain (25 genera, 29 species) (Figs. 4, 5, Tables 2, 3, Supplemental Appendix 2).

With regard to the genus-level distribution, 22 genera (out of 147 genera) were found in four or more locations (Supplemental Appendix 3). The most and widespread of these genera during the Albian are the group of solitary corals, including Aulastraeopora, Bathycyathus, Caryophyllia, Epistreptophyllum, Podoseris, Smilotrochus, Stelloria, and Trochocyathus (8 genera out of 22 = 36.4%), followed by the cerioid-plocoid forms Actinastrea, Columnocoenia, Cyathophora, Heterocoenia, Ovalastrea, Stylina, and Trigerastraea (7 genera out of 22 = 31.8%), the (hydno-) meandroid-thamnasterioid group, consisting of Comoseris, Diplogyra, Eugyra, and Myriophyllia (4 genera out of 22 = 18.2%), and the branching corals Calamophylliopsis, Cladophyllia, and Thecosmilia (3 genera out of 22 = 13.6%) (Supplemental Appendix 3. Whereas some of these genera have been reported from locations belonging to a rather geographically confined area (e.g., the solitary coral Podoseris, reported from Austria, England, Spain, Switzerland), other forms were recorded from areas across the globe (e.g., the solitary genus Caryophyllia, recorded from Germany, Greenland, South Africa, U.S.A.; the colonial [branching] form Calamophylliopsis, found in Austria, Georgia [Caucasus], South Africa, Spain), showing that the number of Albian records may not be indicative of a taxon's cosmopolitan distribution. Based on the records evaluated in the current work it can be said, as a trend, that a little more than 40% of the genera (61 genera = 41.5%) were cosmopolitan/subcosmopolitan during the Albian, whereas a little more than half (74 genera = 50.3%) were recorded from only one location (Supplemental Appendix 3).

With regard to the genus-level, the Albian faunas show affinities ranging between 12.3–20.5%. Compared to the level of correspondence of coral assemblages of the Barremian–Aptian time period (up to 55% between faunas of European localities and up to 47% between faunas of Europe and Central America [Baron-Szabo 2021]), the Albian faunas show rather low similarities. It should be noted, however, that the greatest correspondence (15.2–20.5%) also includes faunas that are largely to distinctly dominated by non-reefal assemblages (Greece, U.S.A.; Table 1). This points to the hypothesis that, in contrast to, e.g., the Barremian–Aptian time period, reefal developments were less crucial for coral recruitment during the Albian.

With regard to species distribution, the vast majority of the taxa (279 taxa = 82.8%) have been recorded from only one geographic region during the Albian. Conversely, the species that have been found in more than one locality (59 species = 17.5%) are distinctly dominated by cosmopolitan/subcosmopolitan taxa. Over three quarters of the species belong to this group (47 species out of 59 = 80%) (Supplemental Appendix 4), most of which were found in the most diverse faunas (30 species = 64%), nearly all of them are colonial (28 of 30 = 93.3%).

The five most diverse coral assemblages recorded for the Albian are the faunas of the U.S.A. (51 genera, 91 species), Mexico (47 genera, 67 species), Greece (41 genera, 60 species), France (32 genera, 48 species), and Spain (25 genera, 29 species) (Tables 2, 3, Supplemental Appendix 3). With regard to the species-level, they show affinities ranging between 1.9–9.1%. Compared to the level of correspondence of coral assemblages of the Barremian–Aptian time period (over 23% between faunas of European localities and up to 14% between faunas of Europe and Central America [Baron-Szabo 2021]), the Albian faunas show low to very low similarities.

From the lower Albian, 118 records of coral taxa were included, comprising 109 species belonging to 63 genera (Supplemental Appendix 5). The majority of the taxa belong to colonial forms (47 genera = 74.6%; 82 species = 75.2%). The most diverse assemblages were described from France (41 species), Mexico (31 species), and the U.S.A. (19 species). During the lower Albian, nine species were reported from more than one locality, including the forms Ahrdorffia vaughani and Trigerastraea whitneyi (both from France and U.S.A.), Aulastraeopora harrisi, Cyathophora miyakoensis, Diplogyra casanovai, Meandrophyllia cf. lotharinga, and Polyastropsis arnaudi (all from France and Mexico), Podoseris mammiliformis (from Austria and Spain), and Trochocyathus antsiranensis (from Austria and Germany).

From the middle Albian, 86 records of coral taxa were included, identifying 82 species belonging to 50 genera (Supplemental Appendix 6). The vast majority of the taxa belong to colonial forms (39 genera = 78%; 61 species = 74.4%). The most diverse assemblages were described from the U.S.A. (60 species) and Mexico (13 species). During the middle Albian, only four species were reported from more than one locality, including the cerioid-plocoid species Cyathophora haysensis, Cyathophora miyakoensis (both from Mexico and U.S.A.), the cerioid-plocoid form Cyathophora pulchella (from Greece and the U.S.A.), and the solitary Trochocyathus conulus (from Poland and U.S.A.).

From the upper Albian, 82 records of coral taxa were included, identifying 77 species belonging to 54 genera (Supplemental Appendix 7). The majority of the taxa belong to colonial forms (36 genera = 66.7%; 44 species = 57.1%). However, making up more than 40% of the faunas (42.9%), solitary forms have the highest number of taxa recorded for the Albian. The most diverse assemblages were described from the U.S.A. (20 species) and Mexico (19 species). During the upper Albian, only four species were reported from more than one locality, including Bathycyathus sowerbyi (from England, Egypt, and U.S.A.), Haldonia vicaryi (from England and Spain), Podoseris mammiliformis (from England and Switzerland), and Trigerastraea haldonensis (from Egypt and England).

A total of 337 taxa belonging to 147 genera and 42 families are recognized from 30 Albian regions in Africa, the Americas, the Arctic, Asia, Australasia, and Europe (280 species determined; 57 taxa kept in open nomenclature). Most of the Albian taxa belong to the cerioid-plocoid group (54 genera = 36.7%; 130 species = 38.5%), followed by solitary forms (39 genera = 26.5%; 94 species = 28%), corals having (hydno-) meandroid-thamnasterioid corallite integration (35 genera = 23.8%; 74 species = 22%), and corals belonging to the branching group (19 genera = 13%; 39 species = 11.5%).

In the Albian corals, corallite diameters range from less than 1 mm (e.g., Heterocoenia minuta) to over 60 mm (e.g., Aulastraeopora harrisi) and fall into three major corallite-size groups: small (up to 2.5 mm), medium (>2.5–9.5 mm), and large (>9.5 mm). The Albian corals are, however, distinctly dominated by forms with medium-size corallites (173 species = 53.4%), followed by forms having large-size corallites (92 species = 28.4%) and small-corallite corals (59 species = 18.2%). With regard to both corallite size and type of integration, the Albian fauna shows little correspondence to Recent zooxanthellate assemblages. Albian corals belonging to species having little or no type of corallite integration (cerioid-plocoid and solitary categories) form the most dominant groups.

The most widespread genera (occurrences in four or more localities during the Albian) are Actinastrea, Aulastraeopora, Bathycyathus, Calamophylliopsis, Caryophyllia, Cladophyllia, Columnocoenia, Comoseris, Cyathophora, Diplogyra, Epistreptophyllum, Eugyra, Heterocoenia, Myriophyllia, Ovalastrea, Podoseris, Smilotrochus, Stelloria, Stylina, Thecosmilia, Trigerastraea, and Trochocyathus.

The five most diverse coral assemblages recorded for the Albian are from tropical/subtropical and arid areas, including the faunas of the U.S.A. (51 genera, 91 species), Mexico (47 genera, 67 species), Greece (41 genera, 60 species), France (32 genera, 48 species), and Spain (25 genera, 29 species). With regard to the species-level, the Albian assemblages show affinities ranging between 1.9–9.1%, which represents low to very low similarities when compared to the level of correspondence of coral assemblages of the Barremian–Aptian time period (over 23%).

As a trend, it can be said that somewhat more than 40% of the genera (61 genera = 41.5%) were cosmopolitan/subcosmopolitan during the Albian, whereas a little more than half (74 genera = 50.3%) were recorded from only one location. Although this suggests a possible high level of endemism, at this point, no further conclusion can be drawn because of the inconsistent sampling effort at the various locations. During the lower and middle Albian, the vast majority of taxa belonged to colonial forms (both 74%). A shift took place during the upper Albian, significantly increasing the number of solitary species to over 40% of the Albian fauna (42.9%).

With regard to the genus-level, the Albian faunas show affinities ranging between 12.3–20.5%, which is in great contrast to the level of correspondence of coral assemblages of the Barremian–Aptian time period (up to 55% between faunas of European localities and up to 47% between faunas of Europe and Central America [Baron-Szabo 2021]). However, because the greatest correspondence (15.2–20.5%) also includes faunas that are largely to distinctly dominated by non-reefal assemblages (Greece, U.S.A.), it can be hypothesized that, in contrast to time periods preceding the Albian (such as the Barremian–Aptian), reefal developments were less crucial for coral recruitment during the Albian. Compared to the situation of the lowermost Cretaceous (Berriasian), which showed that 91% of the species and 83% of the genera belonged to previously established microstructural groups (Baron-Szabo 2018b), the Lower Cretaceous ends with “modern” groups having become dominant (76 genera = 51.7%; 169 species = 50.1%).

Scleractinian corals are identified by examining their macroscopical characters (genus- and species-levels; also used for family-level for some groups) and microscopical characters (family-level; also used for genus-level for some groups) (Figs. 2, 3). Macroscopical features include general types of growth forms (e.g., colonial, solitary, type of corallite integration). Microscopical characters refer to structures that form the skeletal elements of the coral.

The earliest taxonomic works on scleractinian corals were based on the study of macroscopical features (e.g., Linnaeus 1758, d'Orbigny 1849, 1850; Milne Edwards & Haime 1848a, b, c, 1850, 1851a, b, 1857; de Fromentel 1856, 1857, 1861, 1862, 1863, 1867, 1870, 1873, 1877, 1886, 1887; Duncan 1884). During the 20th century, coral taxonomy underwent profound changes by increasingly using microstructural features (trabeculae and non-trabecular septal spines) as the basis for separating taxa mainly at the family-level (e.g., Alloiteau 1952, 1957; Gill 1967, Gill & Lafuste 1987, Morycowa & Roniewicz 1990, 1995; Kołodziej 1995) (Fig. 1). Roniewicz & Morycowa (1989, 1993) distinguished two main microstructural types (simple and compound trabeculae) that occur in three different size groups: mini-trabeculae (up to 50 μm), medium-size trabeculae (50–100 μm), and large-size trabeculae (>100 μm). Over time the importance of the various characters has further changed based on higher resolution of microstructural features (e.g., Cuif 1977, M. Beauvais 1982, Morycowa & Roniewicz 1990, 1995, 2016; Stolarski 1996, Roniewicz & Stolarski 1999, Stolarski & Russo 2002, Kołodziej 2003, Budd & Stolarski 2009, 2011; Huang et al. 2011, 2014a, b; Budd et al. 2012, Arrigoni et al. 2014, Janiszewska et al. 2015), identification of ontogenetic development (e.g., Kołodziej 1995, 2003; Stolarski 1995, 1996; Baron-Szabo 2003, 2008; Budd & Stolarski 2011, Janiszewska et al. 2013), and DNA analyses of coral tissue (e.g., Romano & Palumbi 1996, Fukami et al. 2008, Kitahara et al. 2010, Huang et al. 2011, 2014a, b; Budd et al. 2012, Arrigoni et al. 2014, Seiblitz et al. 2020). These different types of studies resulted in new taxonomic models, especially for fossil groups for taxa at both genus- and family-levels (e.g., M. Beauvais 1982, Eliášová 1990, Morycowa & Roniewicz 1990, 1995, 2016; Cairns 2001, Baron-Szabo 2014, 2017, 2018b, c, d, 2021; Baron-Szabo & Cairns 2019).

The taxonomic framework followed here is based on a synthesis of the modern studies mentioned above with the classical works by Milne Edwards & Haime (1857), de Fromentel (1861), Duncan (1884), Koby (1887), Ogilvie (1897), Oppenheim (1930), Vaughan & Wells (1943), Alloiteau (1952, 1957), Wells (1956), and additional references as listed in Table 4 and Supplemental Appendix 2 and is illustrated by the hypothetical phylogenetic tree shown in Figure 3. For information on excluded taxonomic models see Baron-Szabo (2021, p. 29–30, 166) and Supplemental Appendix 2.

Type species.—

Isastrea trigeride Fromentel, 1887, Cenomanian of France (Le Mans, Sarthe) (see Alloiteau 1952).

Diagnosis.—

Colonial, massive, cerioid, cerio-plocoid, and meandroid. Budding predominantly intracalicular. Calices monocentric or arranged in discontinuous series, separated by tectiform to tholiform collines. Ambulacra present or absent. Costosepta generally compact, confluent to nonconfluent. Septal flanks have fine dentations, flattened and rounded granules, and small pennulae. Columella spongy-papillose or made of irregular segments. Synapticulae numerous. Intertrabecular distance ranging between 120–300 μm. Wall parasynapticulothecal, incomplete or absent. Septothecal thickenings present or absent. Endothecal dissepiments abundant.

Trigerastraea sikharulidzeae, new species Fig. 3A, F, G

    Trigerastraea sikharulidzeae, new species Fig. 3A, F, G
  • Thalamocaeniopsis ouenzensisAlloiteau, 1953, sensu Löser, v2013:26, Fig. 9d–f.

Holotype.—

SMF 75536, designated herein.

Type locality.—

Padern, Aude, France.

Type stratum.—

Marne à Trigonies, lower Albian.

Etymology.—

In honor of the coral specialist Gulnara Sikharulidze.

Material examined.—

The French material SMF 75536 (holotype).

Diagnosis.—

Trigerastraea having corallite diameters (monocentric) of 3–4 mm, distance of corallite centers of 3.5–7 mm, in areas of intense budding less than 3 mm; septa in monocentric corallites of up to around 48, and a septal density of 7–10 septa in 2 mm.

Description.—

Cerioid to cerio-meandroid colony. Corallites are polygonal in outline or arranged in short (up to 5 corallites) meandroid series, separated by tholiform to mainly tectiform collines or ambulacra. Septal linkages occur throughout the colony. Septa nearly equal in thickness, often compact; subcompact to fenestrate in places.

Comparison.—

The new species differs from the species Trigerastraea collignoni, T. gourdani, and T. haldonensis by its smaller range of corallite diameters; T. picteti has smaller corallites, and T. whitneyi has only half the number of septa (also see Supplemental Appendix 2).

Type species.—

Apoplacophyllia hackemesseri Morycowa, inMorycowa & Marcopoulou-Diacantoni, 2002, Albian of Greece (Agrostylia, Parnassos region).

Diagnosis.—

Colonial, phaceloid-dendroid. Corallites circular to irregularly shaped in outline. Budding intracalicular-peripheral. Septa compact, free. Lonsdaleoid septa present, sparse. Columella absent. Endothecal dissepiments vesicular in peripheral area of corallite, subtabular in central part of corallite. Microstructure neorhipidicanth with thick-sized corallite centers arranged in series in septa. Parathecal inner wall (pseudo-wall) present. Wall rhipidothecal, thin.

Apoplacophyllia asiatica, new species

Holotype.—

NIGP 56115/16, designated here.

Type locality.—

Xainza county, Xungmai district, Mayao village, Gangcaiyoula, Tibet.

Type stratum.—

Langshan Formation, Albian.

Etymology.—

Refers to the greater location from which the material was collected (East Asia [Tibet]).

Material examined.—

The Tibetan material NIGP 56115/16 (holotype), as documented in Liao & Xia (1994).

Diagnosis.—

Apoplacophyllia having 12+s septa, in corallites having diameters ranging between 6.5–11 mm.

Description.—

Phaceloid colony. Corallite branches are long and straight; corallites are circular in outline. Septa of first two cycles often nearly equal in thickness and length. Thickness of septa sometimes over 1 mm. S3 present in some corallites, thin.

Comparison.—

The new species differs from the only other known species of Apoplacophyllia (=A. hackemesseri Morycowa, inMorycowa & Marcopoulou-Diacantoni, 2002) in having smaller dimensions of skeletal elements (in A. hackemesseri, the corallite diameter is 11–18 mm and the number of septa is 42–48).

Euhelia expansaKoby, 1896: systematic position unclear. The genus Euhelia has been considered as a junior synonym of Enallhelia by many authors (pers. comm. Lathuilière 2017), but the lack of a styliform columella excludes the material from Enallhelia/Euhelia. Due to its poor preservation, the material is unrecognizable.

In some of the material described from the Albian of Mexico as the cerioid species Preverastraea comalensis (Wells, 1932) (Löser 2007, p. 8, Pl. 1, Fig. 3) neither type of corallite integration nor its presence at all (it could be solitary) is identifiable. Therefore, it is excluded from the evaluation in the current work.

The genus CalostylopsisAlloiteau, 1958, is not a scleractinian; the holotype of the type species (=C. sakalavensis; MNHN.F.M05021) belongs to the spongiomorpha (pers. comm. Baba Senowbari-Daryan 2004; Baron-Szabo & Cairns 2019).

The material described from the upper Albian of England as the solitary form Stelloria incrustans by Duncan (1879) might belong to a colonial, meandroid taxon such as Eugyra.

The material described by Duncan (1879) from the upper Albian of England as Thamnastraea ramsayi and Actinacis insignis might belong to the latomeandrids or haplaraeids.

The material described by Duncan (1879) from the upper Albian of England as Actinacis stellulata might belong to the negoporids.

The material described from the upper Albian of India as Placastrea elegans by Stoliczka (1873) needs further investigation in order to clarify its relationship to genera such as Complexastrea and Diplocoenia.

My thanks and gratitude go to Dennis Opresko (Knoxville, Tennessee) for his valuable suggestions on the manuscript, and, together with both Steve Cairns (Smithsonian Institution, Washington, DC, U.S.A.) and Bernard Lathuilière (Nancy, France), for many discussions on coral taxonomy. I am especially grateful to Ann Budd (University of Iowa, U.S.A.) and one anonymous reviewer for providing invaluable comments on the manuscript.

Type material and additional study material was made accessible to me by Walter Etter (Naturhistorisches Museum Basel, Switzerland); Georg Friebe (“Inatura”, Dornbirn, Austria); Heinz Furrer (University of Zurich, Switzerland); Peter Kürsteiner (Naturmuseum St. Gallen, Switzerland); Andreas Kroh, Alexander Lukeneder, Oleg Mandic, and Thomas Nichterl (all Naturhistorisches Museum, Vienna, Austria); Hans Egger (Geologische Bundesanstalt, Wien; GBA, Vienna, Austria); Sylvain Charbonnier and Christine Perrin (both Museum d'Histoire Naturelle de Paris, France); Helena Eliášová (Prague, Czech Republic); Elžbieta Morycowa (University of Krakow, Poland); Ewa Roniewicz (Academy of Sciences, Warsaw, Poland); Winfried Werner and Martin Nose (both Bayerische Staatssammlung, Munich, Germany); Jill Darrell (The Natural History Museum, London, UK); Dieter Korn (Naturhistorisches Museum Berlin, Germany). I would like to recognize with deep appreciation Georg Friebe (“Inatura”, Dornbirn, Austria) as well as Antoine Pictet (University of Lausanne) for their unlimited help in providing updates of locality and stratigraphy data.

As a Research Associate of the Smithsonian Institution (SI) Washington, DC, U.S.A., and an Honorary Researcher at the Research Institute Senckenberg, Frankfurt, Germany, the author would like to express her deep appreciation for the continuing support from these institutions. I am especially grateful for the financial support by both the “Inatura”, Dornbirn, Austria, and the Encyclopedia of Life (EOL).

*
Abdel-Gawad,
G. I.,
&
Gameil.
M.
1995
.
Cretaceous and Paleocene coral faunas in Egypt and Greece (2) Palaeontology
.
Coral Research Bulletin
4
:
6
36
,
21 pls.
*
Aboul Ela,
N. M.,
Abdel-Gawad,
G. L.
&
Aly.
M. F.
1991
.
Albian fauna of Gabal Manzour, Maghara area north Sinai, Egypt
.
Journal of African Earth Sciences
13
(2)
:
201
220
.
*
Alloiteau,
J.
1936
.
Polypiers fossiles de Madagascar. 1: Formes du Crétacé de la province d'Analalava
.
Annales Géologiques du Service des Mines (Tananarive)
6
:
41
53
.
Alloiteau,
J.
1941
.
Révision de la collection H. Michelin. Polypiers d'anthozoaires fossiles. I. Crétacé
.
Mémoires du Muséum National d'Histoire Naturelle
16
:
1
98
.
Alloiteau,
J.
1946–47
.
Paléontologie
.
Polypiers du Gargasien aragonais.
Pp.
187
243
,
Pls. 1–3 in
Hupé
P.
&
Alloiteau,
J.
eds.,
Anales de la Escuela de Peritos Agrícolas y de Especialidades Agropecuarias y de los Servicios Técnicos de Agricultura 6
(in French).
*
Alloiteau,
J.
1948
.
Polypiers des couches albiennes à grandes Trigonies de Padern (Aude)
.
Bulletin de la Société Géologique de France, 5e série
,
18
:
699
738
.
Alloiteau,
J.
1952
.
Embranchement des Coelentérés. II. Madréporaires post-paléozoïques
.
Pp.
539
684
in
Piveteau,
J.
ed.,
Traité de Paléontologie, Volume 1
.
Masson
,
Paris
.
Alloiteau,
J.
1953
.
Sur cinq genres nouveaux de Madréporaires post-paléozoïques
.
Bulletin de la Société Géologique de France, 6e série
,
9
:
873
887
.
Alloiteau,
J.
1954
.
Le genre Actinastrea d'Orbigny, 1849 dans le Crétacé supérieur français
.
Annales Hébert et Haug
8
:
9
104
,
10 pls.
Alloiteau,
J.
1957
.
Contribution à la systématique des madréporaires fossiles
.
Centre National de la Recherche Scientifique
,
Paris
,
462
pp.
*
Alloiteau,
J.
1958
.
Monographie des Madréporaires fossiles de Madagascar
.
Annales Géologiques de Madagascar
25
:
1
218
,
38 pls.
Alloiteau,
J.
1960
.
Sur le genre Clausastrea
.
Annales de Paléontologie, (Invertébrés)
46
:
3
46
,
pls. 1–5.
Alloiteau,
J.,
&
Dercourt.
J.
1966
.
Données nouvelles sur les polypiers de l'Argolide septentrionale (Grèce)
.
Annales Géologiques des Pays Helléniques
17
:
298
342
.
Alloiteau,
J.,
&
Tissier.
J.
1958
.
Les Madréporaires du Montien des Petites Pyrénées (Comparaison avec ceux du Montien de Mons)
.
Bulletin de la Société d'Histoire Naturelle de Toulouse
93
:
241
293
.
*
de Angelis d'Ossat,
G.
1905
.
Coralli del Cretacico inferiore della Catalogna
.
Palaeontographia Italica
11
:
169
251
.
Arrigoni,
R.,
Kitano,
Y. F.
Stolarski,
J.
Hoeksema,
B. W.
Fukami,
H.
Stefani,
F.
Galli,
P.
Montano,
S.
Castoldi,
E.
&
Benzoni.
F.
2014
.
A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications
.
Zoologica Scripta
43
(6)
:
661
688
.
Baron-Szabo,
R. C.
1993
.
Korallen der höheren Unterkreide (“Urgon”) von Nordspanien (Playa de Laga, Prov. Gernica)
.
Berliner Geowissenschaftliche Abhandlungen (E)
9
:
147
181
.
Baron-Szabo,
R. C.
1998
.
A new coral fauna from the Campanian of northern Spain (Torallola Village, Prov. Lleida)
.
Geologisch-Paläontologische Mitteilungen Innsbruck
23
:
127
191
.
Baron-Szabo,
R. C.
1999
.
Taxonomy of Upper Cretaceous scleractinian corals of the Gosau Group (Weissenbachalm, Steiermark, Austria)
.
Abhandlungen der Geologischen Bundesanstalt
56
(2)
:
441
464
.
Baron-Szabo,
R. C.
2000
.
Late Campanian-Maastrichtian corals from the United Arab Emirates-Oman border region
.
Bulletin of the Natural History Museum London (Geology Series)
56
(2)
:
91
131
.
Baron-Szabo,
R. C.
2002
.
Scleractinian corals of the Cretaceous
.
A compilation of Cretaceous forms with descriptions, illustrations and remarks on their taxonomic position
.
Baron-Szabo, privately published, Knoxville, Tennessee, 539 pp., pls. 1–142, text–figs. 1–86.
Baron-Szabo,
R. C.
2003
.
Taxonomie und Ontogenie von scleractinen Korallen der ostalpinen Oberkreide (Hochmoos- und Grabenbachschichten, Gosau-Gruppe Santon)
.
Jahrbuch der Geologischen Bundesanstalt Wien
143
(2)
:
107
201
.
Baron-Szabo,
R. C.
2005
.
Geographic and stratigraphic distributions of the Caribbean species of Cladocora (Scleractinia, Faviidae)
.
Facies
51
:
195
206
.
Baron-Szabo,
R. C.
2006
.
Corals of the K/T-boundary: Scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphiastraeina
.
Journal of Systematic Palaeontology
4
(1)
:
1
108
.
Baron-Szabo,
R. C.
2008
.
Corals of the K/T-boundary: Scleractinian corals of the suborders Dendrophylliina, Caryophylliina, Fungiina, Microsolenina, and Stylinina
.
Zootaxa
1952
:
1
244
.
*
Baron-Szabo,
R. C.
2013
.
On the Cretaceous genus Podoseris Duncan, 1869 (Scleractinia; Albian; England)
.
Jahrbuch der Geologischen Bundesanstalt
153
(1–4)
:
97
105
.
*
Baron-Szabo,
R. C.
2014
.
Scleractinian corals from the Cretaceous of the Alps and Northern Dinarides with remarks on related taxa
.
Abhandlungen der Geologischen Bundesanstalt
68
:
1
296
,
pls. 1–88, text–figs. 1–22.
Baron-Szabo,
R. C.
2015
.
Paraclausastrea vorarlbergensis sp. nov.; a new coral from the Lower Cretaceous of western Austria (Scleractinia; upper Barremian-lower Aptian; Schrattenkalk Fm.; Vorarlberg)
.
Zootaxa
4032
(3)
:
327
332
.
*
Baron-Szabo,
R. C.
2017
.
Systematic descriptions of the Scleractinia family Rhipidastraeidae
.
Pp.
1
3
in
Selden,
P. A.
ed.,
Treatise on Invertebrate Paleontology, Part F (revised), Volume 2, Cnidaria, Chapter 12. Treatise Online 99
.
KU Paleontological Institute
,
The University of Kansas, Lawrence
.
*
Baron-Szabo,
R. C.
2018
a
[2017]. Scleractinian corals from the upper Aptian–Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland): The Albian
.
Jahrbuch der Geologischen Bundesanstalt
157
(1–4)
:
241
260
,
2 pls.
Baron-Szabo,
R. C.
2018
b.
Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages
.
Zootaxa
4383
(1)
:
1
98
,
12 pls.
Baron-Szabo,
R. C.
2018
c.
Systematic descriptions of the Scleractinia family Pachyphylliidae
.
Pp.
1
8
in
Selden,
P. A.
ed.,
Treatise on Invertebrate Paleontology, Part F (revised), Volume 2, Cnidaria, Chapter 13. Treatise Online 105
.
KU Paleontological Institute
,
The University of Kansas, Lawrence
.
Baron-Szabo,
R. C.
2018
d.
Nomenclatural notes on the genus Favia (Anthozoa: Scleractinia: Faviina: Faviidae)
.
Proceedings of the Biological Society of Washington
131
(1)
:
197
201
.
*
Baron-Szabo,
R. C.
2021
.
Upper Barremian–lower Aptian scleractinian corals of central Europe (Schrattenkalk Fm., Helvetic Zone, Austria, Germany, Switzerland)
.
Zootaxa
4960
(1)
:
1
199
.
Baron-Szabo,
R. C.,
&
Cairns.
S. D.
2017
.
Systematic descriptions of the Scleractinia family Micrabaciidae
.
Pp.
1
8
in
Selden,
P. A.
ed.,
Treatise on Invertebrate Paleontology, Part F (revised), Volume 2, Chapter 11. Treatise Online 98
.
KU Paleontological Institute
,
The University of Kansas, Lawrence
.
Baron-Szabo,
R. C.,
&
Cairns.
S. D.
2019
.
Systematic descriptions of the Scleractinia family Dendrophylliidae
.
Pp.
1
33
in
Selden,
P. A.
ed.,
Treatise on Invertebrate Paleontology, Part F (revised), Volume 2, Chapter 14. Treatise Online 119
.
KU Paleontological Institute
,
The University of Kansas, Lawrence
.
*
Baron-Szabo,
R. C.,
&
Fernández-Mendiola.
P. A.
1997
.
Cretaceous scleractinian corals from the Albian of Cabo de Ajo (Cantabria Province, N-Spain)
.
Paläontologische Zeitschrift
71
:
35
50
.
*
Baron-Szabo,
R. C.,
&
Furrer.
H.
2018
.
Korallen (Anthozoa)
:
Pp. 113–143 in
Kürsteiner,
P.
&
Klug,
C.
eds.,
Fossilien im Alpstein: Kreide und Eozän der Nordostschweiz. Appenzeller Verlag, Schwellbrunn, Switzerland,
372
pp.
*
Baron-Szabo,
R. C.,
&
González-León.
C. M.
1999
.
Lower Cretaceous corals and stratigraphy of the Bisbee Group (Cerro de Oro and Lampazos areas), Sonora, Mexico
.
Cretaceous Research
20
(4)
:
465
497
.
*
Baron-Szabo,
R. C.,
&
González-León.
C. M.
2003
.
Late Aptian-Early Albian corals from the Mural Limestone of the Bisbee Group (Tuape and Cerro de Oro areas), Sonora, Mexico
.
Pp.
187
225
in
Scott,
R. W.
ed.,
Cretaceous stratigraphy and paleoecology, Texas and Mexico: Perkins Memorial Volume. Gulf Coast Section SEPM Foundation, Special Publications in Geology No. 1
.
Houston, Texas,
[CD book].
Baron-Szabo,
R. C.,
&
Steuber.
T.
1996
.
Korallen und Rudisten aus dem Apt im tertiären Flysch des Parnass-Gebirges bei Delphi-Arachowa (Mittelgriechenland)
.
Berliner Geowissenschaftliche Abhandlungen (E)
18
:
3
75
.
*
Baron-Szabo,
R. C.,
Darrell,
J. G.
&
Rosen.
B. R.
2010
.
3. Corals
.
Pp.
28
32
in
Young,
J. R.
Gale,
A. S.
Knight,
R. I.
&
Smith,
A. B.
eds.,
Fossils of the Gault Clay. Field Guide to Fossils No. 12
.
The Palaeontological Association
,
London
.
Baron-Szabo,
R. C.,
Hamedani,
A.
&
Senowbari-Daryan.
B.
2003
.
Scleractinian corals from Lower Cretaceous deposits north of Esfahan (central Iran)
.
Facies
,
48
:
199
216
,
pls. 36–39.
Beauvais,
L.
1964
.
Étude stratigraphique et paléontologique des formations à madréporaires du Jurassique supérieur du Jura et de l'Est du Bassin de Paris
.
Mémoires de la Société Géologique de France, nouvelle série
42
(100)
:
1
287
,
pls. 1–38.
Beauvais,
L.
1976
.
Etude morphologique, taxonomique et phylogénétique du sous-ordre Amphiastraeida Alloiteau (Madréporaires jurassiques)
.
Mémoires de la Société géologique de France, Nouvelle série
126
:
5
42
.
*
Beauvais,
L.
1982
.
Révision du genre Palaeohelia Alloiteau (Scleractiniaire méso-crétacé)
.
Eclogae Geologicae Helvetiae
75
:
669
687
.
Beauvais,
L.
1994
.
Sur le genre Heliocoenia Étallon, Scléractiniaire mésozoïque
.
Eclogae Geologicae Helvetiae
87
:
869
893
.
Beauvais,
L.,
&
Beauvais.
M.
1975
.
Une nouvelle famille dans le sous-ordre des Stylinida All.: les Agatheliidae nov. fam. (Madréporaires mésozoïques)
.
Bulletin de la Société Géologique de France, 7e série
17
(4)
:
576
581
.
*
Beauvais,
M.
1982
.
Révision systématique des Madréporaires des couches de Gosau (Crétacé supérieur, Autriche)
.
Travaux du Laboratoire de Paléontologie des Invertébrés, Université Pierre et Marie Curie
1
:
1
256
;
2
:
1
278
;
3
:
1
177
;
4 (atlas), pls. 1–59; 5 (atlas), figs. 1–131.
Becker,
E.
1875
.
Die Korallen der Nattheimer Schichten (1)
.
Palaeontographica
21
:
1
60
,
pls
1–4
,
40
42
.
Bendukidze,
N. S.
1961
.
On the study of the Lower Cretaceous corals from the Crimea
.
Trudy Geologicheskogo Instituta Akademiya Nauk Gruzinskoy SSR, (Seriya Geologiya)
12
:
5
40
,
pls. 1–7 (in Russian).
Bertling,
M.
1993
.
Riffkorallen im norddeutschen Oberjura –- Taxonomie, Ökologie, Verteilung
.
Palaeontographica Abteilung A
226
(4–6)
:
77
123
.
*
Besairie,
H.,
&
Collignon.
M.
1972
.
Géologie de Madagascar. I. Les terrains sédimentaires
.
Annales Géologiques de Madagascar
35
:
1
463
.
Blainville,
H.-M. D. de.
1830
.
Zoophytes
.
Dictionnaire des Sciences Naturelles
,
60
:
1
631
.
Bölsche,
W.
1866
.
Die Korallen des norddeutschen Jura- und Kreide-Gebirges
.
Zeitschrift der Deutschen Geologischen Gesellschaft
18
:
439
486
,
pl. 437–439.
Bosellini,
F. R.
1999
.
The scleractinian genus Hydnophora (revision of Tertiary species)
.
Paläontologische Zeitschrift
73
:
217
240
.
Bosellini,
F. R.,
&
Russo.
A.
1995
.
The scleractinian genus Actinacis: systematic revison and stratigraphic record of the Tertiary species with special regard to Italian occurrences
.
Rivista Italiana di Paleontologia e Stratigrafia
101
:
215
230
.
Budd,
A. F.
1991
.
Neogene paleontology in the northern Dominican Republic 11. The family Faviidae (Anthozoa: Scleractinia), Part I. The genera Montastraea and Solenastrea
.
Bulletins of American Paleontology
101
(338)
:
1
83
.
Budd,
A. F.
1993
.
Variation within and among morphospecies of Montastraea
.
Pp.
241
254
in,
Oekentorp-Küster,
P.
ed.,
Proceedings of the VI. international symposium on fossil Cnidaria and Porifera held in Münster, Germany 9.–14. September 1991. Volume 1
.
Courier Forschungsinstitut Senckenberg
164
:
1
372
.
Budd,
A. F.,
&
Klaus.
J. S.
2001
.
The origin and early evolution of the Montastraeaannularis” species complex (Anthozoa: Scleractinia)
.
Journal of Paleontology
75
(3)
:
527
545
.
Budd,
A. F.,
&
Stolarski.
J.
2009
.
Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae
.
Acta Zoologica
90
:
142
165
.
Budd,
A. F.,
&
Stolarski.
J.
2011
.
Corallite wall and septal microstructure in scleractinian reef corals: comparison of molecular clades within the family Faviidae
.
Journal of Morphology
272
(1)
:
66
88
.
Budd,
A. F.,
Stemann,
T. A.
&
Stewart.
R. H.
1992
.
Eocene Caribbean reef corals: a unique fauna from the Gatuncillo Formation of Panama
.
Journal of Paleontology
66
(4)
:
570
594
.
Budd,
A. F.,
Fukami,
H.
Smith,
N. D.
&
Knowlton.
N.
2012
.
Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia)
.
Zoological Journal of the Linnean Society
166
:
465
529
.
Budd Foster,
A.
1979
.
Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander)
.
Journal of Experimental Marine Biology and Ecology
39
:
25
54
.
Budd Foster,
A.
1980
.
Ecology and morphology of the Caribbean Mio–Pliocene reef-coral Siderastrea
.
Acta Palaeontologica Polonica
25
:
439
450
.
Cairns,
S. D.
2001
.
A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia)
.
Smithsonian Contributions to Zoology
615
:
1
75
.
*
Casey,
R.
1961
.
The stratigraphical palaeontology of the Lower Greensand
.
Palaeontology
3
(4)
:
487
621
.
*
Clark,
W. B.,
&
Twitchell.
M. W.
1915
.
The Mesozoic and Cenozoic Echinodermata of the United States
.
Monographs of the United States Geological Survey
54
:
1
341
.
Coates,
A. G.,
&
Jackson.
J. B. C.
1987
.
Clonal growth, algal symbiosis, and reef formation by corals
.
Paleobiology
13
(4)
:
363
378
.
Coates,
A. G.,
&
Oliver,
W. A.
Jr.
1973
.
Coloniality in zoantharian corals
.
Pp.
3
27
in
Boardman,
R. S.
Cheetham,
A. H.
&
Oliver,
W. A.
Jr.,
eds.,
Animal colonies: development and function through time
.
Dowden, Hutchinson, & Ross Inc., Stroudsburg, Pennsylvania,
604
pp.
Collignon,
M.
1931
.
La faune du Cénomanien à fossiles pyriteux du nord de Madagascar
.
Annales de Paléontologie (Invertébrés)
20
:
41
104
.
Conrad,
T. A.
1857
.
Description of Cretaceous and Tertiary fossils
.
In
Report on the United States and Mexican Boundary survey, made under the direction of the Secretary of the Interior, Volume 1, part 2. Geological reports of Dr. C. C. Parry and assistant Arthur Schott; Notes by W. H. Emory; Palaeontology and geology of the boundary, by James Hall. Cornelius Wendell, Washington, D.C.,
144
pp.
Cragin,
F. W.
1895
.
Description of Invertebrate fossils from the Comanche series in Texas, Kansas, and Indian Territory
.
Colorado College Studies, Annual Publications
5
:
49
68
,
Colorado Springs, Colorado.
Cuif,
J.-P.
1977
.
Arguments pour une relation phylétique entre les Madréporaires paléozoïques et ceux du Trias
.
Mémoires de la Société Géologique de France
56
:
1
54
.
Cuif,
J.-P.,
&
Perrin
C.
1999
.
Micromorphology and microstructure as expressions of scleractinian skeletogenesis in Favia fragum (Esper, 1795) (Faviidae, Scleractinia)
.
Zoosystema
21
:
137
156
.
Dana,
J. D.
1846
.
Zoophytes
.
Pp.
1
740
in
United States Exploring Expedition during the years 1838–1842 under the command of Charles Wilkes, U.S.N., Vol. 7, Lea & Blanchard, Philadelphia.
*
Delamette,
M.,
Charollais,
J.
Decrouez,
D.
&
Caron.
M.
1997
.
Les grès verts helvétiques (Aptien moyen-Albien supérieur) de Haute-Savoie, Valais et Vaud (Alpes occidentales franco-suisses): analyse stratigraphique et inventaire paléontologique
.
Publications du Département de Géologie et Paléontologie de l'Université de Genève, Section des Sciences de la Terre
23
:
1
400
.
Dietrich,
W. O.
1926
.
Steinkorallen des Malms und der Unterkreide im südlichen Deutsch-Ostafrika
.
Palaeontographica
1
(Supplement 7)
:
43
62
.
*
Donovan,
D. T.
1949
.
Observations on the Mesozoic rocks of Geographical Society Ø, East Greenland
.
Meddelelser om Grønland
149
(5)
:
3
13
.
*
Duncan,
P. M.
1869
.
A monograph of the British fossil corals
.
Second series. Being a supplement to the “Monograph of the British Fossil Corals
, ” by
Milne-Edwards
MM.
and
Haime.
Jules
Part II, No. 1. Corals from the White Chalk, the Upper Greensand, and the Red Chalk of Huntstanton
.
Monograph of the Palaeontographical Society
22
(94)
:
1
26
.
*
Duncan,
P. M.
1870
.
A monograph of the British fossil corals. Second series
.
Being a supplement to the “Monograph of the British Fossil Corals,
” by
Milne-Edwards
MM.
and
Haime.
Jules
Part II, No. 2. Corals from the Upper Greensand of Haldon, from the Gault, and the Lower Greensand
.
Palaeontographical Society monographs
23
(100)
:
27
46
.
*
Duncan,
P. M.
1879
.
On the Upper-Greensand coral fauna of Haldon, Devonshire
.
Quarterly Journal of the Geological Society
35
:
89
97
.
Duncan,
P. M.
1884
.
A revision of the families and genera of the sclerodermic Zoantharia, Ed. & H., or Madreporaria (M. rugosa excepted)
.
Journal of the Linnean Society of London, Zoology
18
(104–105)
:
1
204
.
*
Duncan,
P. M.
1889
.
II.–On the Cretaceous species of Podoseris, Dunc
.
Annals and Magazine of Natural History, Series 6
,
4
(19)
:
24
36
.
Eguchi,
M.
1936
.
Three new genera of corals from the Lower Cretaceous of Japan
.
Proceedings of the Imperial Academy of Japan
12
:
70
72
.
Eguchi,
M.
1951
.
Mesozoic hexacorals from Japan
.
The Science Reports of the Tôhoku University, Second Series, Geology
24
:
1
96
,
pls. 1–28.
Ehrenberg,
C. G.
1834
.
Die Corallenthiere des rothen Meeres physiologisch untersucht und systematisch Verzeichnet. Beiträge zur physiologischen Kenntniss der Corallenthiere im allegemeinen, und besonders des rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben
.
Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin
1832
(1)
:
225
380
.
Eliášová,
H.
1973
.
Sous-famille Rhipidogyrinae Koby, 1905, (Hexacorallia) des calcaires de Štramberk (Tithonien, Tchécoslovaquie)
.
Časopis pro Mineralogii a Geologii
18
(3)
:
267
287
,
pls. 1–13.
Eliášová,
H.
1975
.
Sous-ordre Amphiastraeina Alloiteau, 1952 (Hexacorallia) des calcaires de Štramberk (Tithonien, Tchécoslovaquie)
.
Časopis pro Mineralogii a Geologii
20
(1)
:
1
23
,
pls. 1–12.
Eliášová,
H.
1976
.
Un genre nouveau de la famille Montlivaltiidae Dietrich, 1926 (Hexacorallia) des calcaires de Štramberk (Tithonien, Tchécoslovaquie)
.
Časopis pro Mineralogii a Geologii
21
(2)
:
167
186
.
Eliášová,
H.
1990
.
Coraux des calcaires d'Ernstbrunn (Jurassique supérieur-Crétacé inférieur dans les Carpates externes, zone de Waschberg, Tchécoslovaquie)
.
Časopis pro Mineralogii a Geologii
35
:
113
134
.
Eliášová,
H.
1991
a.
Quelques Scléractiniaires de la Slovaquie (Crétacé et Paléogène, Tchécoslovaquie)
.
Západné Karpaty, Paleontológia
15
:
49
55
(in French).
Eliášová,
H.
1991
b.
Révision du genre Glenarea Počta (Scléractiniaire du Cénomanien supérieur-Turonien inférieur de la Bohême, Tchécoslovaquie)
.
Časopis pro Mineralogii a Geologii
36
:
97
102
(in French).
Eliášová,
H.
1992
.
Archaeocoeniina, Stylinina, Astraeoina, Meandriina et Siderastraeidae (Scléractiniaires. du Crétacé de Bohême (Cénomanien supérieur-Turonien inférieur; Turonien supérieur, Tchécoslovaquie)
.
Věstník Českého Geologického Ústavu
67
(6)
:
399
416
,
8 pls. (in French).
Errenst,
C.
1990
.
Das korallenführende Kimmeridgium der nordwestlichen iberischen Ketten und angrenzender Gebiete (Fazies, Paläogeographie und Beschreibung der Korallenfauna). Teil 1
.
Palaeontographica Abteilung A
214
(3–6)
:
121
207
,
pls. 1–12.
Errenst,
C.
1991
.
Das korallenführende Kimmeridgium der nordwestlichen iberischen Ketten und angrenzender Gebiete (Fazies, Paläogeographie und Beschreibung der Korallenfauna). Teil 2
.
Palaeontographica Abteilung A
215
(1–3)
:
1
42
,
pls. 13–21.
Étallon,
A.
1859
.
Études paléontologiques sur le Haut-Jura. Rayonnés du Corallien
.
Mémoires de la Société d'Émulation du Département du Doubs, 3e série
6
:
53
260
.
Étallon,
A.
1864
.
see
Thurmann,
J.,
&
Étallon.
A.
1864.
Felix,
J.
1891
.
Versteinerungen aus der mexicanischen Jura- und Kreide-Formation
.
Palaeontographica
37
:
140
194
.
Felix,
J.
1903
.
Studien über die korallenführenden Schichten der oberen Kreideformation in den Alpen und in den Mediterrangebieten
.
Palaeontographica
49
:
163
359
.
Ferry,
H. de
1861
.
Note sur l'étage bajocien des environs de Mâcon
.
Mémoire de la Société Linnéenne de Normandie
12
:
1
46
.
Ferry,
H. de
1863
.
Note sur le nouveau genre Fromentellia
.
Buletin de la Société Linnéenne de Normandie, Caen
7
:
217
230
.
*
Filkorn,
H. F.,
&
Pantoja-Alor.
J.
2004
.
A new Early Cretaceous coral (Anthozoa; Scleractinia; Dendrophylliina) and its evolutionary significance
.
Journal of Paleontology
78
(3)
:
501
512
.
*
Filkorn,
H. F.,
&
Pantoja-Alor.
J.
2009
.
Cretaceous corals from the Huetamo region, Michoacan and Guerrero, southwestern Mexico
.
Boletín del Instituto de Geología UNAM
116
:
1
169
.
*
Filkorn,
H. F.,
&
Pantoja-Alor.
J.
2015
.
Nomenclatural notes: Mexican Cretaceous coral species (Cnidaria, Anthozoa, Scleractinia) described as new by Filkorn & Pantoja-Alor (2009), but deemed ‘unpublished' under the International Code of Zoological Nomenclature: republication of data necessary for nomenclatural availability
.
The Bulletin of Zoological Nomenclature
72
(1)
:
93
101
.
Fischer von Waldheim
G.
1807
.
Museum Demidoff (mis en ordre systématique et décrit par
Fischer
G.
).
Ou catalogue systématique et raisonné des curiosités de la nature et de l'art
.
Données à l'Université Impériale de Moscou par Son Excellence Monsieur Paul de Demidoff
,
3
:
1
330
(in French).
Fromentel,
E. de.
1856
.
Note sur les polypiers fossiles de l'étage portlandien de la Haute-Saône
.
Bulletin de la Société Géologique de France, 2e série
13
:
851
865
.
Fromentel,
E. de.
1857
.
Description des Polypiers fossiles de l'étage Nèocomien. J.-B. Bailliére, Paris,
78
pp.
Fromentel,
E. de.
1861
.
Introduction à l'étude des Polypiers fossiles
.
Mémoires de la Société d'Émulation du Département du Doubs., Troisiéme série
5
:
1
357
.
Fromentel,
E. de.
1862
.
Zoophytes
.
Pp. 49–144, pls. 1–36 in
d'Orbigny,
A.
ed.,
Paléontologie Française. Terrains crétacés (2–3), Vol. 8. Masson, Paris.
Fromentel,
E. de.
1863
.
Zoophytes
.
Pp. 145–192, pls. 37–48 in
d'Orbigny,
A.
ed.,
Paléontologie Française
.
Terrains crétacés (4), Vol. 8. Masson, Paris.
Fromentel,
E. de.
1867
.
Zoophytes
.
Pp. 289–336, pls. 73–84 in
d'Orbigny,
A.
ed.,
Paléontologie Française. Terrains crétacés (7), Vol. 8. Masson, Paris
.
Fromentel,
E. de.
1870
.
Zoophytes
.
Pp. 337–384, pls. 85–96 in
d'Orbigny,
A.
ed.,
Paléontologie Française. Terrains crétacés (8), Vol. 8. Masson, Paris
.
Fromentel,
E. de.
1873
.
Zoophytes
.
Pp. 385–432, pls. 97–108 in
d'Orbigny,
A.
ed.,
Paléontologie Française. Terrains crétacés (9), Vol. 8, Masson, Paris.
Fromentel,
E. de.
1877
.
Zoophytes
.
Pp. 433–480, pls. 109–120 in
d'Orbigny,
A.
ed.,
Paléontologie Française. Terrains crétacés (10), Vol. 8, Masson, Paris.
Fromentel,
E. de.
1886
.
Zoophytes
.
Pp. 561–608, pls. 157–180 in
d'Orbigny,
A.
ed.,
Paléontologie Française. Terrains crétacés (14–15), Vol. 8, Masson, Paris.
Fromentel,
E. de.
1887
.
Zoophytes
.
Pp. 609–624 & pls. 181–192 in
d'Orbigny,
A.
ed.,
Paléontologie Française. Terrains crétacés (16), Vol. 8, Paris
(Masson).
Frost,
S. H.,
&
Langenheim.
R. L.
1974
.
Cenozoic reef biofacies; tertiary larger Foraminifera and scleractinian corals from Chiapas, Mexico
.
Northern Illinois University Press
,
Dekalb, Illinois
,
388
pp.
Fukami,
H.,
Chen,
C. A.
Budd,
A. F.
Collins,
A.
Wallace,
C.
Chuang,
Y.-Y.
Chen,
C.
Dai,
C.-F.
Iwao,
K.
Sheppard,
C.
&
Knowlton.
N.
2008
.
Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)
.
PloS One
3
(9)
:
e3222
.
Geyer,
O.
1954
.
Die oberjurassische Korallenfauna von Württemberg
.
Palaeontographica Abteilung A
104
(4–6)
:
121
220
,
pls. 9–16.
Geyer,
O.
1955
.
Beiträge zur Korallenfauna des Štramberger Tithon
.
Paläontologische Zeitschrift
29
:
177
216
,
pls. 22–26.
Gill,
G. A.
1967
.
Quelques précisions sur les septes perforés des polypiers Mésozoïques
.
Mémoires de la Société Géologique de France
106
:
53
83
.
Gill,
G. A.
1977
.
Essai de regroupement des Stylinides (hexacoralliaires) d'après la morphologie des bords internes de leurs septes
.
Mémoires du Bureau de Recherches Géologiques et Minières
89
:
283
295
.
Gill,
G. A.,
&
Coates.
A. G.
1977
.
Mobility, growth patterns and substrate in some fossil and Recent corals
.
Lethaia
10
(2)
:
119
134
.
Gill,
G. A.,
&
Lafuste.
J. G.
1987
.
Structure, répartition et signification paléogéographique d'Aspidiscus, hexacoralliaire cénomanien de la Téthys
.
Bulletin de la Société Géologique de France, 8e série
3
(5)
:
921
934
.
Gill,
G. A.,
&
Russo.
A.
1973
.
Présence d'une structure septale de type “Montlivaltide” chez Trochosmilia, Madréporaire Éocène
.
Annales de Paléontologie (Invertébrés)
59
:
1
61
.
Goldfuss,
G. A.
1826–1829
.
Petrefacta Germaniae. Volumes 1 & 2
.
Arnz & Co
.,
Düsseldorf
,
164
pp.
Gray,
J. E.
1847
.
An outline of an arrangement of stony corals
.
Annals and Magazine of Natural History
19
:
20
128
.
Hackemesser,
M.
1936
.
Eine kretazische Korallenfauna aus Mittelgriechenland und ihre paläobiologischen Beziehungen
.
Palaeontographica Abteilung A
84
(1–3)
:
1
97
.
*
Hartshorne,
P. M.
1989
.
Facies architecture of a Lower Cretaceous coral-rudist patch reef, Arizona
.
Cretaceous Research
10
(11)
:
311
336
.
Huang,
D.,
Licuanan,
W. Y.
Baird,
A. H.
&
Fukami.
H.
2011
.
Cleaning up the ‘Bigmessidae': molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae
.
BMC Evolutionary Biology
11
:
37
.
Huang,
D.,
Benzoni,
F.
Fukami,
H.
Knowlton,
N.
Smith,
N. D.
&
Budd.
A. F.
2014
a.
Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia)
.
Zoological Journal of the Linnean Society
171
(2)
:
277
355
.
Huang,
D.,
Benzoni,
F.
Arrigoni,
R.
Baird,
A. H.
Berumen,
M. L.
Bouwmeester,
J.
Chou,
L. M.
Fukami,
H.
Licuanan,
W. Y.
Lovell,
E. R.
Meier,
R.
Todd,
P. A.
&
Budd.
A. F.
2014
b.
Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae)
.
Zoologica Scripta
43
(5)
:
531
548
.
*
Jacka,
A. D.,
&
Brand.
J. P.
1977
.
Biofacies and development and differential occlusion of porosity in a Lower Cretaceous (Edwards) reef
.
Journal of Sedimentary Petrology
47
(1)
:
366
381
.
Janiszewska,
K.,
Jaroszewicz,
J.
&
Stolarski.
J.
2013
.
Skeletal ontogeny in basal scleractinian micrabaciid corals
.
Journal of Morphology
274
(3)
:
243
257
.
Janiszewska,
K.,
Stolarski,
J.
Kitahara,
M. V.
Neuser,
R. D.
&
Mazur.
M.
2015
.
Microstructural disparity between basal micrabaciids and other Scleractinia: new evidence from Neogene Stephanophyllia
.
Lethaia
48
(3)
:
417
428
.
*
Jell,
J. S.,
Cook,
A. G.
&
Jell.
P. A.
2011
.
Australian Cretaceous Cnidaria and Porifera
.
Alcheringa An Australasian Journal of Palaeontology
35
(2)
:
241
284
.
*
Kemper,
E.
1982
.
Die Kaltwasser-Korallen der Schlammgründe des frühen Alb in Nordwestdeutschland [Lower Albian cold-water corals of the muddy bottoms in Northwest Germany]
.
Geologisches Jahrbuch A
65
:
513
515
.
*
Kennedy,
W. J.,
Cobban,
W. A.
Gale,
A. S.
Hancock,
J. M.
&
Landman.
N. H.
1998
.
Ammonites from the Weno Limestone (Albian) in Northeast Texas
.
American Museum Novitates
3236
:
1
46
.
Kitahara,
M. V.,
Fukami,
H.
Benzoni,
F.
&
Huang.
D.
2016
.
The new systematics of scleractinia: integrating molecular and morphological evidence
.
Pp.
41
59
in
Goffredo,
S.
&
Dubinsky,
Z.
eds.,
The Cnidaria, past, present and future: the world of Medusa and her sisters
.
Springer International Publishing
,
Switzerland, 875 pp
.
Kitahara,
M. V.,
Cairns,
S. D.
Stolarski,
J.
Blair,
D.
&
Miller.
D. J.
2010
.
A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data
.
PLoS ONE
5
(7)
:
e11490
.
Knorr,
G. W.,
&
Walch.
E. I.
1777
.
Recueil des Monumetns des catastrophes que le Globe de la Terre a Éssuiées, contenant des Pétrifications e d'autres Pierres curieuses. Nürnberg (publisher unknown), 116 pp.,
(in French).
Koby,
F.
1884
.
Monographie des polypiers jurassiques de la Suisse (4)
.
Mémoires de la Société Paléontologique Suisse (=Abhandlungen der Schweizerischen Paläontologischen GeselIschaft)
11
:
149
212
,
pls. 43–63 (in French).
Koby,
F.
1887
.
Monographie des polypiers jurassiques de la Suisse (7)
.
Mémoires de la Société Paléontologique Suisse (=Abhandlungen der Schweizerischen Paläontologischen GeselIschaft)
14
:
353
400
,
pls. 99–108 (in French).
Koby,
F.
1888
.
Monographie des polypiers jurassiques de la Suisse (8)
.
Mémoires de la Société Paléontologique Suisse (=Abhandlungen der Schweizerischen Paläontologischen GeselIschaft)
15
:
401
456
,
pls. 109–120 (in French).
*
Koby,
F.
1896
.
Monographie des polypiers crétacés de la Suisse (1)
.
Mémoires de la Société Paléontologique Suisse (=Abhandlungen der Schweizerischen Paläontologischen GeselIschaft)
22
:
1
28
,
pls. 1–8 (in French).
*
Koby,
F.
1897
.
Monographie des polypiers crétacés de la Suisse (2)
.
Mémoires de la Société Paléontologique Suisse (=Abhandlungen der Schweizerischen Paläontologischen GeselIschaft)
23
:
29
62
,
pls. 9–16 (in French).
*
Koby,
F.
1898
.
Monographie des polypiers crétacés de la Suisse (3)
.
Mémoires de la Société Paléontologique Suisse (=Abhandlungen der Schweizerischen Paläontologischen GeselIschaft)
24
:
63
100
,
pls. 17–22 (in French).
Koby,
F.
1904
.
Description de la faune jurassique du Portugal, polypiers du Jurassique supérieur
.
Commission du Service Géologique du Portugal, 88 pp.,
(in French).
Kołodziej,
B.
1995
.
Microstructure and taxonomy of Amphiastraeina (Scleractinia)
.
Annales Societatis Geologorum Poloniae
65
:
1
17
.
Kołodziej,
B.
2003
.
Scleractinian corals of suborders Pachythecaliina and Rhipidogyrina: discussion on similarities and description of species from Štramberk-type limestones, Polish Outer Carpathians
.
Annales Societatis Geologorum Poloniae
73
(3)
:
193
217
.
Kołodziej,
B.,
Ivanov,
M.
&
Idakieva.
V.
2012
.
Prolific development of Pachythecaliines in late Barremian, Bulgaria: coral taxonomy and sedimentary environment
.
Annales Societatis Geologorum Poloniae
82
(4)
:
291
330
.
König,
C. D. E.
1825
.
Icones Fossilium Sectiles. G. B. Sowerby, London.
Kossmat,
F.
1907
.
Geologie der Insel Sokótra, Séma und Abd el Kûri
.
Denkschriften der Akademie der Wissenschaften Wien
71
:
1
62
,
pl. 61–65.
*
Kues,
B. S.
1997
.
New bivalve taxa from the Tucumcari Formation (Cretaceous, Albian), New Mexico, and the biostratigraphic significance of the basal Tucumcari fauna
.
Journal of Paleontology
71
(5)
:
820
839
.
Kuzmicheva,
E. I.
1963
.
New species of Early Valanginian solitary scleractinians from the Mountain Crimea
.
Paleontologicheskiy Zhurnal
3
:
18
26
,
pl. 12, (in Russian).
Kuzmicheva,
E. I.
1970
.
To the revision of the genus Mesomorpha (Scleractinia)
.
Paleontologicheskiy Zhurnal
1
:
82
87
,
pl. 5, (in Russian).
Kuzmicheva,
E. I.
1987
.
Korally iz nizhnebarremskikh organogennykh postroek Malogo Balkhana i Tuarkyra [Corals from the Lower Barremian organogenous buildups on the Malyy Balkhan and Tarrkyr (=Small Balkhan and Tuarkira.]
.
Akademiya Nauk Turkmenskoy SSR, Ashkhabad,
pp.
217
262
,
pls. 211–217
(in Russian).
Kuzmicheva,
E. I.
2002
.
Skeletal morphology, systematics and evolution of Scleractinia
.
Trudy Paleontologicheskogo Instituta
286
:
1
211
(in Russian).
Lambelet,
E.
1968
.
Korallen im Korallen-Oolith mit besonderer Berücksichtigung der Gattungen Montlivaltia und Thecosmilia
.
Ph.D. Thesis,
Universität Hamburg
,
Germany
,
239
pp.
Lamouroux,
J. U. F.
1821
.
Exposition méthodique des genres de l'ordre des polypiers
.
Agasse, Paris, 115 pp., 84 pls.
Lang,
W. D.
1909
.
Growth stages in the British species of the coral genus Parasmilia
.
Proceedings of the Zoological Society of London
30
:
285
307
.
Lathuilière,
B.
1989
.
Isastrea, polypier branchu
.
Comptes Rendus des Séances de l'Académie des Sciences, Série 2
308
:
887
892
.
Lathuilière,
B.
1990
.
Periseris, scléractiniaire colonial jurassique. Révision structurale et taxinomie de populations bajociennes de l'est de la France
.
Geobios
23
:
33
55
.
Lathuilière,
B.
1996
.
Itinéraires astogéniques chez des coraux simples et coloniaux montlivaltiides du Bajocien de France
.
Geobios
29
:
577
603
.
Lathuilière,
B.,
&
Gill.
G. A.
1998
.
Dendraraea corail scléractiniaire branchu jurassique: structure, systématique, écologie
.
Palaeontographica Abteilung A
248
(3–6)
:
145
162
.
Lathuilière,
B.,
Baron-Szabo,
R. C.
Charbonnier,
S.
&
Pacaud.
J.-M.
2020
.
The Mesozoic scleractinian genus Adelocoenia (Stylinidae) and its Jurassic species
.
Carnets de Géologie
20
(19)
:
367
406
,
figs. 1–36.
*
Laughbaum,
L. R.
1960
.
A paleoecologic study of the Upper Denton Formation, Tarrant, Denton, and Cooke Counties, Texas
.
Journal of Paleontology
34
(6)
:
1183
1197
.
Lauxmann,
U.
1991
.
Revision der oberjurassischen Korallen von Württemberg (SW-Deutschland), exclusive Fungiina
.
Palaeontographica Abteilung A
219
(4–6)
:
107
175
,
pls. 1–7.
Lauxmann,
U.,
&
Kapitzke.
M.
1991
.
Microphyllia profunda n. sp. und Microphyllia minima (Koby 1885), zwei neue meandroide Korallenarten aus dem höheren Oberjura der Schwäbischen Alb (SW-Deutschland)
.
Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie)
175
:
1
11
.
*
Liao,
W.
1982
.
Mesozoic scleractinian corals from Xizang (Tibet),
pp.
151
183
,
Science Press, Beijing,
(in Chinese with English summary).
*
Liao,
W.,
&
Xia.
J.
1994
.
Mesozoic and Cenozoic scleractinian corals from Xizang
.
Palaeontologia Sinica, New Series B
,
184
(31)
:
1
252
.
von Linnaeus,
Carl
1758
.
Systema naturæ, per regna tria naturæ, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Tomus I
.
Laurentius Salvius
,
Holmiæ [=Stockholm] (in Latin)
,
824
pp.
Löser,
H.
1993
.
Morphologie und taxonomie der Gattung Mixastraea Roniewicz 1976 (Scleractinia; Jura-Kreide)
.
Berliner Geowissenschaftliche Abhandlungen Reihe E
9
:
103
109
.
*
Löser,
H.
2007
.
Morphology, taxonomy and distribution of the Cretaceous coral genus Preverastraea (Late Barremian-Cenomanian; Scleractinia
.
Rivista Italiana di Paleontologia e Stratigrafia
113
(1)
:
3
19
.
*
Löser,
H.
2008
.
Early Cretaceous (Late Valanginian-Aptian) coral faunas from East Africa (Tanzania, Kenya) and revision of the Dietrich collection (Berlin, Germany)
.
Palaeontographica Abteilung A
285
(1–3)
:
23
75
,
5 pls.
*
Löser,
H.
2010
.
Revision of the Early Cretaceous coral genus Felixigyra
.
Rivista Italiana di Paleontologia e Stratigrafia
116
(2)
:
189
200
.
*
Löser,
H.
2011
.
The Cretaceous corals from the Bisbee Group (Sonora; late Barremian - early Albian): introduction and family Aulastraeoporidae
.
Revista Mexicana de Ciencias Geológicas
28
(2)
:
254
261
.
*
Löser,
H.
2013
.
An Early Albian shallow marine coral fauna from Southern France – insight into evolution and palaeobiogeography of Cretaceous corals
.
Palaeobiodiversity and Palaeoenvironments
93
(1)
:
1
43
.
*
Löser,
H.
2015
.
The Cretaceous corals from the Bisbee Group (Sonora; Late Barremian - Early Albian): Solenocoeniidae
.
Paleontologia Mexicana
4
(2)
:
13
24
.
*
Löser,
H.
2016
a
[2015]. Remarks on the genus Angelismilia Reig, 1988 (Scleractinia, Early Cretaceous)
.
Treballs del Museu de Geologia de Barcelona
21
:
29
33
.
*
Löser,
H.
2016
b.
The Cretaceous corals from the Bisbee Group (Sonora, Mexico; Late Barremian - Early Albian): suborder Heterocoeniina
.
Paleontología Mexicana
5
(1)
:
41
51
.
*
Löser,
H.
2016
c.
Taxonomy and distribution of the Cretaceous coral genus Eosiderastrea
.
Carnets de Géologie
16
(16)
:
383
416
.
Löser,
H.
2016
d.
Catalogue of Cretaceous Corals, Volume 4: Systematic part
.
CPress Verlag
,
Dresden
,
710
pp.
*
Löser,
H.,
&
Liao.
W.
2001
.
Cretaceous corals from Tibet (China) – stratigraphic and palaeobiogeographic aspects
.
Journal of Asian Earth Sciences
19
(5)
:
661
667
.
*
Löser,
H.,
&
Raeder.
M.
1995
.
Aptian/Albian coral assemblages of the Helicon Mountains (Boeotia, Greece): palaeontological, palaeoecological and palaegeographical aspects
.
Coral Research Bulletin
4
:
41
70
.
*
Löser,
H.,
Arias,
C.
&
Vilas.
L.
2015
.
Aptian-Albian coral faunas from the Sierra del Carche (Prebetic, Murcia, southern Spain)
.
Spanish Journal of Palaeontology
30
(1)
:
43
64
.
Löser,
H.,
Castro,
J. M.
&
Nieto.
L. M.
2013
.
Late Albian Scleractinian corals from the Prebetic zone (SE Spain)
.
Palaeontographica Abteilung A
301
(1–2)
:
1
62
.
Löser,
H.,
Stemann,
T. A.
&
Mitchell.
S.
2009
.
Oldest Scleractinian fauna from Jamaica (Hauterivian, Benbow Inlier)
.
Journal of Paleontology
83
(3)
:
333
349
.
*
Löser,
H.,
Fernández-Mendiola,
P. A.
Pérez-Malo,
J.
Domínguez Pascual
S.
&
Cahuzac.
B.
2021
.
Redefinition of the family Rhizangiidae (Scleractinia; Cretaceous to Recent) and description of a new genus from the Early Cretaceous of Spain
.
Neues Jahrbuch für Geologie und Paläontologie Abhandlungen
299
(3)
:
259
274
.
Lowenstam,
H. A.
1942
.
Geology of the eastern Nazareth mountains, Palastine I. Cretaceous stratigraphy
.
The Journal of Geology
50
(7)
:
813
845
.
Michelin,
H.
1841
.
Iconographie zoophytologique, description par localités et terrains des polypiers fossiles de France et pays environnants
.
Volume 2, pp.
18
72
.
P.
Bertrand
,
Paris
.
Michelin,
H.
1843
.
Iconographie zoophytologique
.
Description par localités et terrains des polypiers fossiles de France
.
Volume 3,
pp.
73
104
.
P. Bertrand, Paris.
Michelin,
H.
1845
.
Iconographie zoophytologique
.
Description par localités et terrains des polypiers fossiles de France
.
Volume 5, pp.
145
184
.
P. Bertrand, Paris.
Michelin,
H.
1846
.
Iconographie zoophytologique
.
Description par localités et terrains des polypiers fossiles de France
.
Volume 6,pp.
185
248
.
P. Bertrand, Paris
(in French).
Michelin,
H.
1847
.
Iconographie zoophytologique
.
Description par localités et terrains des polypiers fossiles de France
.
Volume 7,pp.
249
328
.
P. Bertrand, Paris.
Milne Edwards,
H.,
&
Haime.
J.
1848
a.
Observations sur les Polypiers de la famille des Astréides
.
Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences
27
:
465
469
(in French).
*
Milne Edwards,
H.,
&
Haime.
J.
1848
b.
Recherches sur les polypiers. Deuxième mémoire. Monographie des turbinolides
.
Annales de Sciences Naturelles, Série 3, Zoologie
9
:
211
344
,
pls. 7–10 (in French).
Milne Edwards,
H.,
&
Haime.
J.
1848
c.
Recherches sur les polypiers. Quatrième mémoire. Monographie des astréides
.
Annales de Sciences Naturelles, Série 3, Zoologie
10
:
209
320
,
pls. 5–9 (in French).
*
Milne Edwards,
H.,
&
Haime.
J.
1850
.
A monograph of the British fossil corals. First Part. Introduction; corals from the Tertiary and Cretaceous formations
.
Monographs of the Palaeontographical Society
3
(7)
:
i
71
,
pls. 1–11.
Milne Edwards,
H.,
&
Haime.
J.
1851
a.
A monograph of the British fossil corals. Second part. Corals from the oolitic formations
.
Monographs of the Palaeontographical Society
5
(12)
:
73
145
,
pls. 12–30.
Milne Edwards,
H.,
&
Haime.
J.
1851
b.
Monographie des polypiers fossiles des terrains palæozoïques, précédée d'un tableau général de la classification des polypes
.
Archives du Muséum d'Histoire Naturelle
5
:
1
502
.
Milne Edwards,
H.,
&
Haime.
J.
1857
.
Histoire naturelle des Coralliaires ou polypes proprement dits
.
Volumes 1 & 2
,
and atlas, Librairie Encyclopédique de Roret, Paris
,
633
pp.
*
Montanaro-Gallitelli,
E.,
&
Lang.
Z.
1937
.
Celenterati, echinodermi e brachiopodi del cretaceo medio-superiore della Zululand
.
Palaeontographia Italica
37
:
193
210
,
9 Pls.
Morycowa,
E.
1964
.
Hexacorallia des couches de Grodziszcze (Néocomien, Carpathes)
.
Acta Palaeontologica Polonica
9
(1)
:
3
114
,
pls. 1–33 (in French).
Morycowa,
E.
1971
.
Hexacorallia et Octocorallia du Crétacé inférieur de Rarau (Carpathes orientales roumaines)
.
Acta Palaeontologica Polonica
16
(1–2)
:
3
149
(in French).
*
Morycowa,
E.
1975
.
Coral-bearing sediments in the Polish Carpathians. Akademiya Nauk SSSR
.
Trudi Instytut Geologija i Geofisiki
,
202
(3)
:
220
226
.
Morycowa,
E.
1997
.
Some remarks on Eugyra de Fromentel, 1857 (Scleractinia, Cretaceous). Boletín de la Real Sociedad Española de Historia Natural
.
Sección Geologica
91
:
287
295
.
Morycowa,
E.
2013
.
Cretaceous Scleractinian coral Preverastraeopsis gen. n. from central Greece
.
Rivista Italiana di Paleontologia e Stratigrafia
119
(2)
:
199
203
.
Morycowa,
E.,
&
Decrouez.
D.
2006
.
Early Aptian scleractinian corals from the Upper Schrattenkalk of Hergiswil (Lucerne region, Helvetic Zone of central Switzerland)
.
Revue de Paléobiologie
25
(2)
:
791
838
.
*
Morycowa,
E.,
&
Marcopoulou-Diacantoni.
A.
1997
.
Cretaceous scleractinian corals from the Parnassos area (central Greece) (preliminary note)
.
Bulletin of the Geological Society of Greece
30
:
259
273
.
(for 1994)
*
Morycowa,
E.,
&
Marcopoulou-Diacantoni.
A.
2002
.
Albian corals from the subpelagonian zone of central Greece (Agrostylia, Parnassos region)
.
Annales Societatis Geologorum Poloniae
72
:
1
65
.
Morycowa,
E.,
&
Masse.
J.-P.
2009
.
Lower Cretaceous Microsolenina (Scleractinia) from Provence (southern France)
.
Annales Societatis Geologorum Poloniae
79
(2)
:
97
140
.
Morycowa,
E.,
&
Roniewicz.
E.
1990
.
Revision of the genus Cladophyllia and description of Apocladophyllia gen.n. (Cladophylliidae fam.n., Scleractinia)
.
Acta Palaeontologica Polonica
35
(3–4)
:
165
190
,
pls. 15–22.
Morycowa,
E.,
&
Roniewicz.
E.
1995
.
Microstructural disparity between Recent fungiine and Mesozoic microsolenine scleractinians
.
Acta Palaeontologica Polonica
40
(4)
:
361
385
.
Morycowa,
E.,
&
Roniewicz.
E.
2016
.
Microstructural evidence of the stylophyllid affinity of the genus Cyathophora (Scleractinia, Mesozoic)
.
Annales Societatis Geologorum Poloniae
86
:
1
16
.
*
Moussavian,
E.
1992
.
On Cretaceous bioconstructions: composition and evolutionary trends of crust-building associations
.
Facies
26
:
117
144
.
Ogilvie,
M. M.
1897
.
Die Korallen der Stramberger Schichten
.
Palaeontographica
7A
:
73
282
.
Oppenheim,
P.
1930
.
Die Anthozoen der Gosauschichten in den Ostalpen
.
Oppenheim
,
privately published, Lichterfelde, Berlin
,
604
pp.
d'Orbigny,
A.
1849
.
Prodrôme de paléontologie stratigraphique universelle des animaux mollusques et rayonnés faisant suite au cours élémentaire de paléontologie et de géologie stratigraphiques. Volume 1
.
Victor Masson
,
Paris
,
394
pp.
d'Orbigny,
A.
1850
.
Prodrôme de Paléontologie stratigraphique universelle des animaux mollusques et rayonnés faisant suite au cours élémentaire de paléontologie et de géologie stratigraphiques. Volume 2
.
Victor Masson
,
Paris
,
428
pp.
Pandey,
D. K.,
&
Fürsich.
F. T.
2003
.
Jurassic corals of east-central Iran
.
Beringeria
32
:
1
138
.
Pandey,
D. K.,
&
Lathuilière.
B.
1997
.
Variability in Epistreptophyllum from the Middle Jurassic of Kachchh, western India: an open question for the taxonomy of Mesozoic scleractinian corals
.
Journal of Paleontology
71
(4)
:
564
577
.
Pandey,
D. K.,
McRoberts,
C. A.
&
Pandit.
M. K.
1999
.
Dimorpharaea de Fromentel, 1861 (Scleractinia, Anthozoa) from the Middle Jurassic of Kachchh, India
.
Journal of Paleontology
73
(6)
:
1015
1028
.
Pandey,
D. K.,
Fürsich,
F. T.
Baron-Szabo,
R.
&
Wilmsen.
M.
2007
.
Lower Cretaceous corals from the Koppeh Dagh, NE-Iran
.
Zitteliana
A47
:
3
52
.
Phillips,
J.
1829
.
Illustrations of the geology of Yorkshire; or, a description of the strata and organic remains of the Yorkshire coast
.
Thomas Wilson and Sons
,
York
,
192
pp.
Počta,
P.
1887
.
Die Anthozoen der Böhmischen Kreideformation
.
Abhandlungen der Königlichen Böhmischen Gesellschaft der Wissenschaften
7
:
1
60
(in German).
Prever,
P. L.
1909
.
Anthozoa
.
Pp.
51
147
in
Parona,
C.F.
ed.,
La Fauna Coralligena del Cretaceo dei Monti d'Ocre nell'Abruzzo Aquilano
.
G. Civelli, Rome,
242
pp. (in Italian).
Quenstedt,
F. A.
1879
.
Petrefactenkunde Deutschlands (Teil 2). Röhren- und Sternkorallen
.
Fues's Verlag
,
Leipzig
,
pp.
364
911
.
Quenstedt,
F. A.
1880
.
Petrefactenkunde Deutschlands (Teil 3). Röhren- und Sternkorallen
.
Fues's Verlag
,
Leipzig
,
pp.
625
912
.
Reig Oriol,
J. M.
1988
[1987]. Dos nuevos géneros de corales cretácicos
.
Batalleria
1
:
39
45
.
Reig Oriol,
J. M.
1994
.
Madreporarios cretácicos de Cataluña
.
Reig Oriol
,
privately published, Barcelona
,
60
pp. (in Spanish).
Reig Oriol,
J. M.
1995
.
Madreporarios cretácicos
.
Reig Oriol
,
privately published, Barcelona
,
62
pp. (in Spanish).
Reig Oriol,
J. M.
1997
.
Géneros y especies nuevas de Madreporarios cretácicos
.
Reig Oriol
,
privately published, Barcelona
,
45
pp. (in Spanish).
Reuss,
A. E.
1854
.
Beiträge zur Charakteristik der Kreideschichten in den Ostalpen, besonders im Gosauthale und am Wolfgangsee. Denkschriften der Kaiserlichen Akademie der Wissenschaften
.
Mathematisch-Naturwissenschaftliche Classe
7
:
1
156
.
*
Reyeros de Castillo,
M. M.
1983
.
Corales de algunas formaciones cretacicas del Estado de Oaxaca
.
Universidad Nacional Autonoma de Mexico, Instituto de Geologia, Paleontología Mexicana
47
:
1
67
.
Roemer,
F. A.
1849
.
Texas: mit besonderer Rücksicht auf deutsche Auswanderung und die physischen Verhältnisse des Landes nach eigener Beobachtung geschildert
.
Adolph Marcus, Bonn, 464 pp., 1 map.
Roemer,
F. A.
1888
.
Ueber eine durch die Haeufigkeit Hippuriten-artiger Chamiden ausgezeichnete Fauna der Oberturonen Kreide von Texas
.
Palaeontologische Abhandlungen
4
(4)
:
281
296
.
Romano,
S. L.,
&
Palumbi.
S. R.
1996
.
Evolution of scleractinian corals inferred from molecular systematics
.
Science
271
(5249)
:
640
642
.
Roniewicz,
E.
1960
.
Complexastraea i Thecosmilia z astartu Polski
.
Acta Palaeontologica Polonica
5
(4)
:
451
470
(in Polish).
Roniewicz,
E.
1970
.
Kobyastraea n. gen., genre homomorphique de Thamnasteria Lesauvage, 1823 (Hexacoralla)
.
Acta Palaeontologica Polonica
15
(1)
:
137
151
,
pl. 1–4.
Roniewicz,
E.
1976
.
Les scléractiniaires du Jurassique supérieur de la Dobrogea centrale, Roumanie
.
Palaeontologia Polonica
34
:
17
121
,
pls. 1–34 (in French).
Roniewicz,
E.
1979
.
Jurassic scleractinian coral Thamnoseris Etallon, 1864, and its homeomorphs
.
Acta Palaeontologica Polonica
24
(1)
:
51
64
,
pl. 59–14.
Roniewicz,
E.
1996
.
The key role of skeletal microstructure in recognizing high-rank scleractinian taxa in the stratigraphical record
.
The Paleontological Society Papers
1
:
187
206
.
Roniewicz,
E.,
&
Morycowa.
E.
1989
.
Triassic Scleractinia and the Triassic/Liassic boundary
.
Memoirs of the Association of Australasian Palaeontologists
8
:
347
354
.
Roniewicz,
E.,
&
Morycowa.
E.
1993
.
Evolution of the Scleractinia in the light of microstructural data
.
Courier Forschungsinstitut Senckenberg
164
:
233
240
.
Roniewicz,
E.,
&
Stolarski.
J.
1999
.
Evolutionary trends in the epithecate scleractinian corals
.
Acta Palaeontologica Polonica
44
(2)
:
131
166
.
Scotese,
C. R.
2014
.
Atlas of Early Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, Volume 2, The Cretaceous, Maps 23–31
.
Mollweide Projection
,
PALEOMAP Project,
Evanston, Illinois
,
15
pp.
*
Scott,
R. W.
1979
.
Depositional model of Early Cretaceous coral-algal-rudist reefs, Arizona
.
AAPG Bulletin
63
(7)
:
1108
1127
.
*
Scott,
R. W.,
Molineux,
A. M.
Löser,
H.
&
Mancini.
E. A.
2007
.
Lower Albian sequence stratigraphy and coral buildups: Glen Rose Formation, Texas, U.S.A
.
In
Scott,
R. W.
ed.,
Cretaceous rudists and carbonate platforms: environmental feedback
.
SEPM Special Publication
87
:
181
191
.
Seguenza,
G.
1882
.
Studi geologici e paleontologici sul cretaceo medio dell'Italia meridionale
.
Atti della Reale Accademia dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, Serie III
12
:
1
152
.
Seiblitz,
I. G. L.,
Capel,
K. C. C.
Stolarski,
J.
Quek,
Z. B. R.
Huang,
D.
&
Kitahara.
M. V.
2020
.
The earliest diverging extant scleractinian corals recovered by mitochondrial genomes
.
Scientifc Reports
10
:
20714
.
Shimer,
H. W.,
&
Shrock.
R. R.
1944
.
Index fossils of North America: a new work based on the complete revision and reillustration of Grabau and Shimer's “North American index fossils.” Chapman & Hall, London,
837
pp.
*
Sikharulidze,
G. Y.
1979
.
Albskiye korally cela Tskhanari [Albian corals from the village Tskhanari]
.
Trudy Geologicheskogo Instituta, Akademiya Nauk Gruzinskoy SSR (Seriya Geologiya)
63
:
1
49
,
pls. 1–26. [in Russian]
Söhle,
U.
1899
.
Das Ammergebirge: geologisch aufgenommen und beschrieben
.
(Abdruck aus den Geognostische Jahresheften
11
:
39
89
,
pls. 1–14). Piloty & Loehle, Munich, 51 pp, 14 pl.
*
Squires,
D. F.
1958
.
The Cretaceous and Tertiary corals from New Zealand
.
New Zealand Geological Survey, Palaeontological Bulletin
29
:
1
107
.
*
Steuber,
T.
1999
.
Cretaceous rudists of Boeotia, Central Greece
.
Special Papers in Palaeontology
61
:
1
229
.
*
Stolarski,
J.
1990
.
On Cretaceous Stephanocyathus (Scleractinia) from the Tatra Mts
.
Acta Palaeontologica Polonica
35
:
31
39
.
Stolarski,
J.
1991
.
Miocene scleractinia from the Holy Cross Mountains, Poland; Part 1 – Caryophylliidae, Flabellidae, Dendrophylliidae, and Micrabaciidae
.
Acta Geologica Polonica
41
:
37
67
.
Stolarski,
J.
1995
.
Ontogenetic development of the thecal structures in caryophylliine scleractinian corals
.
Acta Palaeontologica Polonica
40
(1)
:
19
44
.
Stolarski,
J.
1996
.
Gardineria – A scleractinian living fossil
.
Acta Palaeontologica Polonica
41
(4)
:
339
367
.
Stolarski,
J.,
&
Russo.
A.
2002
.
Microstructural diversity of the stylophyllid (Scleractinia) skeleton
.
Acta Palaeontologica Polonica
47
(4)
:
651
666
.
*
Stolarski,
J.,
Zibrowius,
H.
&
Löser.
H.
2001
.
Antiquity of the scleractinian-sipunculan symbiosis
.
Acta Palaeontologica Polonica
46
(3)
:
309
330
.
*
Stoliczka,
F.
1873
.
Cretaceous fauna of southern India
.
Ser
.
VIII
,
4
5
.
The corals or Anthozoa, with notes on the Sponges, Foraminifera, Arthrozoa and Spondylozoa
.
Memoirs of the Geological Survey of India. Palaeontologia Indica
4
:
1
202
.
Tennant,
J. P.,
Mannion,
P. D.
Upchurch,
P.
Sutton,
M. D.
&
Price.
G. D.
2017
.
Biotic and environmental dynamics through the Late Jurassic–Early Cretaceous transition: evidence for protracted faunal and ecological turnover
.
Biological Reviews
92
(2)
:
776
814
.
Thurmann,
J.,
&
Étallon.
A.
1864
.
Lethea Bruntrutana: ou, études paléontologiques et stratigraphiques sur le Jura Bernois et en praticulier les environs de Porrentruy
.
Neue Denkschriften der allgemeinen schweizerischen Gesellschaft für die gesammten Naturwissenschaften, H. Georg, Basel, 500 pp., pls. 1–62.
*
Tomes,
R. F.
1885
.
Observations on some imperfectly known Madreporaria from the Cretaceous formation of England
.
Geological Magazine, New Series Decade 3
,
2
:
541
553
.
Toula,
F.
1882
.
Grundlinien der Geologie des westlichen Balkan. Denkschriften der Kaiserlichen Akademie der Wissenschaften
.
Mathematisch-Naturwissenschaftliche Classe
44
(2)
:
1
58
.
Toula,
F.
1889
.
Geologische Untersuchungen im centralen Balkan
.
Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe
55
(2)
:
1
108
.
Trauth,
F.
1911
.
Die oberkretazische Korallenfauna von Klogsdorf in Mähren
.
Zeitschrift des Mährischen Landesmuseums
11
:
85
184
.
Trautschold,
H.
1886
.
Le Néocomien de Sably en Crimée
.
Nouveaux Mémoires de la Société Impériale des Naturalistes de Moscou
15
:
119
129
.
pls. 1–5.
Turnšek,
D.
1972
.
Zgornjejurske korale iz južne Slovenije [Upper Jurassic corals of southern Slovenia]
.
Razprave Slovenska Akademija Znanosti in Umetnosti (4)
15
:
147
265
,
pls. 1–37.
Turnšek,
D.
1978
.
Solitarne senonijske korale iz Stranic in z Medvednice [Solitary Senonian corals from Stranice and Mt. Medvednica (NW Yugoslavia)]
.
Razprave Slovenska Akademija Znanosti in Umetnosti (4)
21
:
66
125
.
*
Turnšek,
D.
1997
.
Mesozoic corals of Slovenia [Mezozojske korale Slovenije]
.
Znanstvenoraziskovalni Center SAZU
,
Založba ZRC, Ljubljana
,
512
pp.
Turnšek,
D.,
&
Buser.
S.
1974
.
The Lower Cretaceous corals, hydrozoans, and chaetitids of Banjska Planota and Trnovski Goszd
.
Razprave IV, Razreda SAZU
17
:
81
124
.
Turnšek,
D.,
&
Buser.
S.
1976
.
Knidarijska favna iz senonijske breče na Banjški planoti [Cnidarian fauna from the Senonian breccia of Banjška planota (NW Yugoslavia)]
.
Razprave Slovenska Akademija Znanosti in Umetnosti (4)
19
:
39
88
,
pls. 1–25 (in Slovenian and English).
Turnšek,
D.,
&
Mihajlović.
M.
1981
.
Spodnjekredni knidariji iz vzhodne Srbije [Lower Cretaceous cnidarians from eastern Serbia].
Razprave Slovenska Akademija Znanosti in Umetnosti (4)
23
:
1
54
,
pls. 1–50.
*
Turnšek,
D.,
LeMone,
D. V.
&
Scott.
R. W.
2003
.
Tethyan Albian corals, Cerro de Cristo Rey Uplift, Chihuahua and New Mexico
.
Pp.
147
185
in
Scott,
R. W.
ed.,
Cretaceous stratigraphy and paleoecology, Texas and Mexico: Perkins Memorial Volume. Gulf Coast Section SEPM Foundation, Special Publications in Geology No. 1
.
Houston, Texas,
[CD book].
Turnšek,
D.,
Pleničar,
M.
&
Šribar.
L.
1992
.
Lower Cretaceous fauna from Slovenski Vrh near Kočevje (South Slovenia)
.
Razprave Slovenska Akademija Znanosti in Umetnosti (4)
33
:
205
257
,
pls. 1–14.
Vaughan,
T. W.
1900
.
The Eocene and Lower Oligocene coral faunas of the United States, with descriptions of a few doubtfully Cretaceous species
.
Monographs of United States Geological Survey
39
:
1
263
.
Vaughan,
T. W.
1905
.
A critical review of the literature on the simple genera of the Madreporaria Fungida, with a tentative classification
.
Proceedings of the United States National Museum
28
:
371
424
.
Vaughan,
T. W.
1919
.
Fossil corals from Central America, Cuba, and Porto Rico, with an account of the American Tertiary, Pleistocene, and Recent coral reefs
.
United States National Museum Bulletin
103
:
189
524
.
Vaughan,
T. W.,
&
Wells.
J. W.
1943
.
Revision of the suborders, families and genera of the Scleractinia
.
Special Papers of the Geological Society of America
44
:
1
363
.
Vérard,
C.,
Stampfli,
G.
Borel,
G.
&
Hochard.
C.
2017
.
The Indian Promontory: a bridge between plate tectonics and life evolution models
.
Universal Journal of Geoscience
5
(2)
:
25
32
.
Wanner,
J.
1902
.
Die Fauna der obersten weissen Kreide der libyschen Wüste
.
Palaeontographica
30
:
91
151
.
*
Wells,
J. W.
1932
.
Corals of the Trinity Group of the Comanchean of Central Texas
.
Journal of Paleontology
6
(3)
:
225
256
.
*
Wells,
J. W.
1933
.
Corals of the Cretaceous of the Atlantic and Gulf coastal plains and western interior of the United States
.
Bulletins of American Paleontology
18
(67)
:
1
207
.
Wells,
J. W.
1934
.
Some fossil corals from the West Indies
.
Proceedings of the United States National Museum
83
(2975)
:
71
110
.
Wells,
J. W.
1936
.
The nomenclature and type species of some genera of Recent and fossil corals
.
American Journal of Science, Fifth Series
31
(182)
:
97
134
.
Wells,
J. W.
1937
.
New genera of Mesozoic and Cenozoic corals
.
Journal of Paleontology
11
(1)
:
73
77
.
*
Wells,
J. W.
1944
.
Cretaceous, Tertiary, and Recent corals, a sponge, and an alga from Venezuela
.
Journal of Paleontology
18
(5)
:
429
447
.
*
Wells,
J. W.
1947
.
Coral Studies. Part III. Three new Cretaceous corals from Texas and Alabama
.
Bulletins of American Paleontology
31
(123)
:
165
168
.
Wells,
J. W.
1948
.
Lower Cretaceous corals from Trinidad, B. W. I
.
Journal of Paleontology
22
(5)
:
608
616
.
Wells,
J. W.
1956
.
Scleractinia
.
Pp.
328
444
in
Moore,
R. C.
ed.,
Treatise on Invertebrate Paleontology, Part F. Coelenterata
.
The Geological Society of America, New York, & The University of Kansas Press, Lawrence,
498
pp.
*
Wells,
J. W.
1973
.
Texastrea, a new Scleractinian coral from the Lower Cretaceous of Texas
.
Journal of Paleontology
47
(5)
:
913
914
.
Yabe,
H.,
&
Eguchi.
M.
1936
.
Eohydnophora, a new genus of Cretaceous corals
.
Proceedings of the Imperial Academy of Japan
12
(5)
:
141
143
.
*
Yazdi,
M.,
Bahrami,
A.
&
Leloux.
J.
2011
.
Funginella? isfahanensis n. sp. from the upper Albian of Iran
.
Revista Mexicana de Ciencias Geológicas
,
28
(2)
:
226
234
.
*
Young,
K.
1966
.
Texas Mojsisovicziinae (Ammonoidea) and the zonation of the Fredricksburg
.
Geological Society of America Memoir
100
:
1
225
.
Zaman,
S.,
&
Lathuilière.
B.
2014
.
A lectotype for Cyathophora richardi Michelin 1843
.
Zootaxa
3795
(2)
:
198
200
.
Zibrowius,
H.
1980
.
Les scléractiniares de la Méditeranée et de l'Atlantique nord-oriental
.
Mémoires de l'Institut Océanographique, Monaco
11
:
1
284
.
[in French]
Zlatarski,
V. N.
1967
.
Note sur le genre Clausastrea d'Orbigny
.
Bulletin of the Geological Institute, Series Paleontology, Bulgarian Academy of Sciences
16
:
23
33
.

Supplementary data