The peanut CSSL population represents one of the ways that interspecific hybridization has been used to introduce genetic variation into cultivated peanut. The lines were developed by crossing Fleur 11, a farmer preferred spanish cultivar from West Africa with a synthetic allotetraploid. The latter was developed by crossing A. duranensis to A. ipaensis and tetraploidizing the resultant hybrid. Subsequent selection with genetic markers resulted in a population comprising lines with small chromosome segments from the wild in a cultivated peanut background.  The objective of this study was to characterize the protein, total oil, fatty acid and sugar profiles of the population. The results indicated that the values of Fleur 11 for all the traits analyzed were within the normal range expected in peanut. Since the population had a uniform genetic background derived from Fleur 11, the profiles for a majority of the lines were comparable to Fleur 11. However, three lines (CSSL 84, CSSL 100 and CSSL 111) were found to have elevated oleic acid and reduced linoleic and palmitic acid relative to Fleur 11. The oleic to linoleic acid ratios (O/L) for these lines were 118, 104 and 97% greater than that of Fleur 11, respectively. While the increased values are still considered to be within the normal oleic acid range, the effect of introgressions on these lines represent the possibility of discovering new sources of high O/L polymorphisms. Such polymorphisms have the potential for use in further improving peanut oil quality.

This content is only available as a PDF.