Reassessment of γ doses from the atomic bombs in Hiroshima and Nagasaki has been carried out with thermoluminescent measurements of ceramic materials, such as bricks and decorative tiles, which were collected from buildings that remain as they were at the time of the explosions. The thermoluminescent measurements were performed using thermoluminescent dating techniques generally used in archaeology. Annual background dose rates from natural radionuclides in the ceramic materials and from environmental radiation including cosmic rays were determined with commercially available thermoluminescent detectors. A time-zero point at the original firing of the ceramic materials was estimated from the age of the buildings given in "the register book." Total background dose was evaluated by multiplying the period between the time-zero point and the time of measurement by the annual dose rate. The resultant γ doses in Hiroshima and Nagasaki are given as a function of distance from ground zero and are compared with the DS86 (Dosimetry System 1986) and the T65D (Tentative 1965 Dose) γ doses.
Skip Nav Destination
Close
Article navigation
January 1988
Research Article|
January 01 1988
Reassessment of γ Doses from the Atomic Bombs in Hiroshima and Nagasaki
Radiat Res (1988) 113 (1): 1–14.
Citation
Takashi Maruyama, Yoshikazu Kumamoto, Yutaka Noda; Reassessment of γ Doses from the Atomic Bombs in Hiroshima and Nagasaki. Radiat Res 1 January 1988; 113 (1): 1–14. doi: https://doi.org/10.2307/3577175
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr