A temperature-sensitive mutant for protein synthesis, CHO-tsH1, has been compared to the wild-type (WT) cell, CHO-SC1, in single- and split-radiation-dose schemes. When the exponentially growing mutant and the wild-type cells were treated at 40°C for up to 3 h prior to split doses of X rays, survival was progressively reduced in the mutant compared to the wild type. In addition, if a 2-h split-dose scheme was used with a treatment of 40°C given before the first dose, between the dose fractions and after the second dose, the recovery from sublethal damage (SLD) was almost completely inhibited in the mutant cells. These observations implied that a pool of proteins was involved in the recovery from sublethal X-ray damage. However, if molecular repair was measured in the mutant cell by the alkaline-unwinding technique under the same time and temperature schemes as those demonstrating a reduction in the recovery from SLD, no difference in the kinetics of DNA strand rejoining was observed compared to similar measurements made under conditions permitting SLD recovery. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. Split-dose experiments were also done using cycloheximide to chemically inhibit protein synthesis. Under conditions which mimicked those used in the temperature-shift experiments both cell lines showed a reduction in the recovery from sublethal damage comparable in magnitude to that observed in the mutant cells when they were treated with 40°C. Both the chemical and thermal inhibition of protein synthesis substantiate its necessity for the recovery from sublethal damage.

This content is only available as a PDF.
You do not currently have access to this content.