Subpopulations of mouse lens epithelial cells, differing in proliferative status, were irradiated with either X rays or fission spectrum neutrons given singly or in four weekly fractions. After various times, epithelia were mitogenically stimulated by wounding and DNA synthesis responses were determined by incorporation of [3 H]thymidine. At 1 h following both X and neutron irradiations, significant suppression of the wound response after single doses and a sparing effect of fractionation were evident in both the mitotically quiescent and the slowly proliferating subpopulations. At 1 week following single or fractionated doses of both radiations, recovery was evident in both subpopulations. By 4 weeks, the quiescent subpopulation showed significant recovery after both single and fractionated doses of X rays or neutrons. In contrast, a marked decreased ability to respond after neutron irradiation and, in addition, a significant enhancement effect of neutron fractionation were observed for the slowly proliferating subpopulation. Per gray, neutrons were about 7.5 times more effective than X rays as a single dose and 25 times more effective in four equal fractions. The shift from an initial sparing to a final enhancing effect of neutron fractionation for the slowly proliferating subpopulation has importance for understanding divergent early and late radiation responses following dose fractionation.
Skip Nav Destination
Close
Article navigation
June 1988
Research Article|
June 01 1988
Recovery of Murine Lens Epithelial Cells from Single and Fractionated Doses of X Rays and Neutrons
Radiat Res (1988) 114 (3): 567–578.
Citation
Edgar F. Riley, Richard C. Miller, Alice L. Lindgren; Recovery of Murine Lens Epithelial Cells from Single and Fractionated Doses of X Rays and Neutrons. Radiat Res 1 June 1988; 114 (3): 567–578. doi: https://doi.org/10.2307/3577127
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner