It has been postulated that high energy heavy ions cause a unique form of damage in living tissue, which results from the high linear energy transfer of accelerated single particles. We have searched for these single-particle effects, so-called "microlesions," in composite electron micrographs of retinas of rats which had been irradiated with a dose of 1 Gy of 570 MeV/amu argon ions. The calculated rate of energy deposition of the radiation in the retina was about 100 keV/μm and the fluence was four particles per <tex-math>$100\ \mu {\rm m}^{2}$</tex-math>. Different areas of the irradiated retinas which combined would have been expected to be traversed by approximately 2400 particles were examined. We were unable to detect ultrastructural changes in the irradiated retinas distinct from those of controls. The spatial cellular densities of pigment epithelial and photoreceptor cells remained within the normal range when examined at 24 h and at 6 months after irradiation. These findings suggest that the retina is relatively resistant to heavy-ion irradiation and that under the experimental conditions the passage of high energy argon ions does not cause retinal microlesions that can be detected by ultrastructural analysis.
Skip Nav Destination
Close
Article navigation
1 July 1988
Research Article|
July 01 1988
The Effect of Accelerated Argon Ions on the Retina
Radiat Res (1988) 115 (1): 192–201.
Citation
W. Krebs, I. Krebs, G. R. Merriam,, B. V. Worgul; The Effect of Accelerated Argon Ions on the Retina. Radiat Res 1 July 1988; 115 (1): 192–201. doi: https://doi.org/10.2307/3577067
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner