The effect of postirradiation hypoxia induced by administration of the vasodilator hydralazine on the efficacy of misonidazole and RSU-1069 used in combination with radiation has been evaluated. Studies with the Lewis lung carcinoma indicate that hydralazine at a dose of 5 mg/kg reduces tumor blood flow and consequently increases the amount of hypoxia in the tumor tissue. Administration of hydralazine immediately after radiation treatment increased the amount of cell kill. However, the increase in cell kill was more pronounced when hydralazine was used in treatment regimes in which misonidazole (0.2 mg/g) or RSU-1069 (0.02 mg/g) was administered pre- or postirradiation. The finding that similar effects are observed if the nitroimidazoles were administered either before or after radiation in the regimes involving hydralazine suggests that the enhanced cell killing observed is due to hypoxic cell cytotoxicity. In contrast to the effects of hydralazine on the response of tumors to radiation plus misonidazole or RSU-1069, it has no effect on the response of mouse intestine to such treatment regimes. Thus therapeutic gain may accrue from the use of hydralazine in radiation treatments which incorporate the nitroimidazole radiosensitizers misonidazole and RSU-1069.
Skip Nav Destination
Close
Article navigation
1 August 1988
Research Article|
August 01 1988
Postirradiation Modification of Tumor Blood Flow: A Method to Increase the Effectiveness of Chemical Radiosensitizers
Radiat Res (1988) 115 (2): 292–302.
Citation
D. J. Chaplin; Postirradiation Modification of Tumor Blood Flow: A Method to Increase the Effectiveness of Chemical Radiosensitizers. Radiat Res 1 August 1988; 115 (2): 292–302. doi: https://doi.org/10.2307/3577165
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr