The repair of potentially lethal damage (PLD) in stationary-phase V79 Chinese hamster cells, which was expressible by a postirradiation treatment with hypertonic (0.5 M NaCl) phosphate-buffered saline (PBS), was analyzed within the framework of the theory of dual radiation action. The interaction function γ(x) was estimated for cells permitted to repair PLD for various intervals of time. The experimental data indicated that 50-60% of the lethal lesions produced at the time of irradiation were repaired in 120 min. The repair of PLD was implicitly involved in the probability of the interaction of sublesions. That is,$g(x,t_{{\rm rep}})$ was defined as the probability that two sublesions separated by distance x interact to produce a lethal lesion which will not be repaired until the fixation by treatment with hypertonic PBS at time$t_{{\rm rep}}$ after irradiation. It is concluded that the time dependence of the repair of PLD is not independent of the interaction distance x. Three conclusions are drawn: (1) The repair of a lesion produced by a long distance interaction is not detectable by postirradiation treatment with hypertonic PBS. (2) A lesion produced by a short distance interaction is rapidly repaired in about 20 min. (3) A lesion produced by the interaction of sublesions separated by a distance of about 100 nm is repaired slowly.
Skip Nav Destination
Close
Article navigation
1 December 1988
Research Article|
December 01 1988
Interaction Function γ(x) for Chinese Hamster Cells Treated with Hypertonic Phosphate-Buffered Saline after Irradiation
Radiat Res (1988) 116 (3): 472–481.
Citation
Mitsuru Nenoi, Tatsuaki Kanai; Interaction Function γ(x) for Chinese Hamster Cells Treated with Hypertonic Phosphate-Buffered Saline after Irradiation. Radiat Res 1 December 1988; 116 (3): 472–481. doi: https://doi.org/10.2307/3577390
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner