In vivo31 P nuclear magnetic resonance (<tex-math>${}^{31}{\rm P}\ {\rm NMR}$</tex-math>) spectroscopy has been used to compare metabolic profiles with tumor radiosensitivity. A radioresistant mammary carcinoma (MCa) and a radiosensitive methylcholanthrene-induced fibrosarcoma (Meth-A) were studied by31 P NMR spectroscopy in the tumor volume range of approximately <tex-math>$100-1200\ {\rm mm}^{3}$</tex-math>. The MCa showed a constant pH in this volume range; the ratio of phosphocreatine to inorganic phosphate (<tex-math>${\rm PCr}/P_{{\rm i}}$</tex-math>) for <tex-math>$160-300\ {\rm mm}^{3}$</tex-math> tumors was 0.33 ± 0.11 (mean ± standard deviation) and did not change (0.29 ± .09) for tumors in the volume range of <tex-math>$600-1200\ {\rm mm}^{3}$</tex-math>. In comparison, the Meth-A showed a decrease in tumor pH as volume increased from <tex-math>$160-300\ {\rm mm}^{3}$</tex-math> (pH 7.16 ± .04) to <tex-math>$600-1200\ {\rm mm}^{3}$</tex-math> (pH 6.94 ± .07). Tumor <tex-math>${\rm PCr}/P_{{\rm i}}$</tex-math> decreased from 0.70 ± .16 (<tex-math>$160-300\ {\rm mm}^{3}$</tex-math>) to 0.33 ± .16 (<tex-math>$600-1200\ {\rm mm}^{3}$</tex-math>). The radiation doses for control of MCa-induced tumors in 50% of the treated tumors ranged from 65 (<tex-math>$150-250\ {\rm mm}^{3}$</tex-math>) to 71 Gy (<tex-math>$1000-1300\ {\rm mm}^{3}$</tex-math>) and for the Meth-A-induced tumors ranged from 35 (<tex-math>$150-250\ {\rm mm}^{3}$</tex-math>) to 38 Gy (<tex-math>$1000-1300\ {\rm mm}^{3}$</tex-math>). These results suggest that31 P NMR spectra may be a qualitative predictor of tumor hypoxia, although further studies of human and rodent tumors are necessary to support this hypothesis.
Skip Nav Destination
Close
Article navigation
March 1990
Research Article|
March 01 1990
Changes in 31P Nuclear Magnetic Resonance with Tumor Growth in Radioresistant and Radiosensitive Tumors
Radiat Res (1990) 121 (3): 312–319.
Citation
J. A. Koutcher, A. A. Alfieri, D. C. Barnett, D. C. Cowburn, A. B. Kornblith, J. H. Kim; Changes in 31P Nuclear Magnetic Resonance with Tumor Growth in Radioresistant and Radiosensitive Tumors. Radiat Res 1 March 1990; 121 (3): 312–319. doi: https://doi.org/10.2307/3577782
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner