In experiments designed to measure radiation-induced DNA damage using the DNA unwinding-hydroxyapatite chromatography technique, we observed that under some experimental conditions a significant proportion of the test DNA became tightly bound to the hydroxyapatite (HA) and could not be released even with a high concentration of phosphate buffer. Approximately 5-10% of DNA from unirradiated cells binds to the HA. With increasing radiation doses in air, the fraction of bound DNA increases, reaching about 30% at about 35 Gy. The binding exhibits many of the characteristics of a radiation-induced cell lesion: the proportion of DNA retained by the HA is less when cells are irradiated under hypoxic conditions or in the presence of the thiol radioprotector dithiothreitol; and the binding decreases when an incubation period is allowed between irradiation and harvest of the cells for assay. Studies to determine the nature of the lesion responsible for the binding demonstrated that lesion production requires a component found in cells since no binding was observed with irradiated isolated DNA or nuclear matrix; the binding is not a result of the production of DNA-protein crosslinks; and the bound DNA is single-stranded, based on its sensitivity to nuclease S1. Because of the dose dependence of the binding of DNA to HA, the slopes of the dose-response curves for DNA damage determined with this assay depend on the method used to calculate the fraction of double-stranded DNA. Our demonstration that the bound DNA is single-stranded guides the choice of the method for data analysis.
Skip Nav Destination
Close
Article navigation
September 1990
Research Article|
September 01 1990
Radiation-Induced Binding of DNA from Irradiated Mammalian Cells to Hydroxyapatite Columns
Radiat Res (1990) 123 (3): 268–274.
Citation
Kathryn D. Held, Jane Mirro, Deborah C. Melder, William F. Blakely, Nancy L. Oleinick, Song-Mao Chiu; Radiation-Induced Binding of DNA from Irradiated Mammalian Cells to Hydroxyapatite Columns. Radiat Res 1 September 1990; 123 (3): 268–274. doi: https://doi.org/10.2307/3577732
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr