The time of appearance and the dose response of radiation effects in the mouse kidney were assessed from the determination of increases in labeling index, the appearance of proximal tubule cells with abnormally large nuclei, and kidney weight loss. Increased labeling indices and abnormally large nuclei were observed in the irradiated proximal tubule cells before any other histological changes were seen. The labeling index increased with dose (from 3 to 15 Gy) but not with time (from 1 to 12 months after irradiation). Increased labeling was evident as soon as 1 month after irradiation. Cell depletion as measured by a decrease in kidney weights compared to those of age-matched controls was not significant until 6 or more months after 11-, 13-, or 15-Gy irradiation. The frequency of cells with large nuclei increased steadily during the first 9 months after 15 Gy and tended to decline between 9 and 12 months, coincident with accelerating renal weight loss. These findings are consistent with the hypothesis that the production of these cells is a result of an abortive mitotic division and their loss is an eventual result of such an aberration. The increased proliferation induced by irradiation increases the chance for an abortive mitosis and death, presumably at a subsequent mitosis, of radiation-damaged proximal tubule cells, which is a major factor in the appearance of late radiation damage in the kidney.
Skip Nav Destination
Close
Article navigation
September 1990
Research Article|
September 01 1990
Cell Proliferation and Abnormal Nuclei Induced by Radiation in Renal Tubule Epithelium as an Early Manifestation of Late Damage
Radiat Res (1990) 123 (3): 285–291.
Citation
Makoto Otsuka, Marvin L. Meistrich; Cell Proliferation and Abnormal Nuclei Induced by Radiation in Renal Tubule Epithelium as an Early Manifestation of Late Damage. Radiat Res 1 September 1990; 123 (3): 285–291. doi: https://doi.org/10.2307/3577734
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr