Induction of transient thermotolerance by heat or other cytotoxic stressors has been reported to confer a moderate degree of drug resistance to tumor cells in vitro. In this study, a genetically stable, heat-resistant mouse B16 melanoma variant (W-H75) was tested for its sensitivity to various cytotoxic and antiproliferative agents. The heat-resistant W-H75 cells displayed a moderate two- to threefold resistance to doxorubicin, VP-16, VM-26, colchicine, cis-dichlorodiammineplatinum(II), HgCl2, and CdCl2. Marginal resistance to 4′(9-acridinylamino)methanesulfon-m-anisidide vinblastine, 1,3-bis(2-chloroethyl)-1-nitrosourea, and NaAsO2 was observed, while no difference in sensitivity to the anticancer drugs, actinomycin D and camptothecin, was observed. Although W-H75 cells were generally more resistant than the parental cells to most of the agents that were tested, they were collaterally sensitive to the antimetabolites methotrexate and 6-mercaptopurine. Resistance of the W-H75 cells to epipodophyllotoxins and anthracyclines was not due to differences in steady-state drug accumulation. For the epipodophyllotoxin VP-16, resistance may be related to a relative decrease in the number of drug-induced DNA strand breaks in W-H75 cells. However, no difference in DNA strand breakage was observed between W-H75 and parental cells which were treated with doxorubicin, suggesting that resistance to this drug occurred by a different mechanism. The possible involvement of glutathione and glutathione S-transferase in resistance was also investigated. The glutathione content in W-H75 cells was 35% higher than that in the parental line. However, glutathione S-transferase activity appeared to be identical in both cell lines. Two other heat-resistant B16 melanoma variants, B-H103 and R-H92, were also tested for sensitivity to doxorubicin and VP-16. In contrast to the W-H75 cells, these two heat-resistant variants were hypersensitive to doxorubicin. The B-H103 cells were also hypersensitive to VP-16. This study suggests that selection for cellular resistance to heat may result in cells that have an altered sensitivity to drugs.
Skip Nav Destination
Close
Article navigation
October 1990
Research Article|
October 01 1990
Drug Sensitivity of Heat-Resistant Mouse B16 Melanoma Variants
Radiat Res (1990) 124 (1): 15–21.
Citation
David J. Kroll, Christopher J. Borgert, Tien-Wen Wiedmann, Thomas C. Rowe; Drug Sensitivity of Heat-Resistant Mouse B16 Melanoma Variants. Radiat Res 1 October 1990; 124 (1): 15–21. doi: https://doi.org/10.2307/3577688
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner