The radioprotective and toxic effects of low to moderate doses of S-2-(3-aminopropylamino)ethyl phosphorothioic acid (WR-2721) and its combination with mercaptopropionylglycine (MPG, 20 mg/kg body wt) on the chromosomes of the bone marrow cells of Swiss albino mice were studied at 24 h and 14 days postirradiation. Significant protection against radiation-induced chromosome aberrations was observed with 50 mg/kg WR-2721. The protection increased with the dose of the drug administered, and the degree of protection per unit dose increment was more pronounced at lower than at higher doses. A combination of WR-2721 and MPG given before exposure resulted in a significantly greater number of normal metaphases at 24 h postirradiation compared to the respective single-drug treatment groups. On Day 14 postirradiation, when the presence of WR-2721 resulted in an increase in the frequency of aberrant cells, combination with MPG helped to reduce this value markedly, especially at WR-2721 doses below 200 mg/kg. On the basis of these results it is suggested that 150 mg/kg WR-2721 may be considered an optimum dose for combination with MPG for protection of chromosomes of bone marrow cells when repeated drug administrations are not needed. Changes in the level of glutathione (GSH) in the blood were studied at different times following the administration of 150 mg/kg WR-2721 and its combination with MPG (20 mg/kg) before sham irradiation or exposure to 4.5 Gy60 Co γ rays. The results showed that WR-2721 elevated blood GSH levels significantly above normal values by the time radiation was delivered, while MPG did not. Glutathione appears to have an important role in the action of WR-2721, while protection by MPG may not be mediated through GSH. Injection of MPG after WR-2721 helps to maintain the higher GSH level for a longer duration compared to treatment with WR-2721 alone. It is possible that MPG delays the metabolism of GSH.

This content is only available as a PDF.
You do not currently have access to this content.