The role of glutathione (GSH) in determining the intrinsic cellular radioresistance under aerobic conditions was studied with the parent cell line MSCC and its radioresistant subclone R1 isolated from a mouse squamous cell carcinoma. The mean inactivation doses (D̄) of the survival curves were 2.1 and 4.0 Gy for exponentially growing MSCC and R1 cells, respectively. The corresponding GSH content was 22.6 and$13.4\ {\rm nmol}/10^{6}\ \text{cells}$. There was no significant difference in either the distribution of GSH between nucleus and cytoplasm or the turnover rate of GSH between the two cell lines. Thus it appeared that the radioresistance of R1 cells resulted from mechanisms unrelated to GSH. However, R1 cells became progressively more radiosensitive with a decrease of the GSH content with buthionine sulfoximine (BSO) treatment until about 20 h, and the radiosensitivity showed little change thereafter. The MSCC cells showed little change in the radiosensitivity with the same treatment. In fact, dose-survival curves showed that the enhancement ratio of D̄ with the 24-h BSO treatment was 1.1 for MSCC and 1.4 for R1 cells, although the GSH content was reduced to 1 to 2% of the untreated level for both cell lines. There was no significant difference in the activities of GSH S-transferase and GSH reductase between MSCC and R1 cells before and after BSO treatment, or between BSO-treated and untreated cells of the same cell lines. Although the exact mechanisms of GSH-related radioresistance of R1 cells are unclear, these results suggest that there may exist GSH-related mechanisms in addition to radical scavenging which determine the intrinsic cellular radioresistance under aerobic conditions.

This content is only available as a PDF.
You do not currently have access to this content.