In previous studies, we have demonstrated the differences in thermotolerance induced by heat and sodium arsenite (Lee et al., Radiat. Res. 121, 295-303, 1990). In this study, we investigated whether a 26-kDa protein might play an important role in evincing these differences. Chinese hamster ovary (CHO) cells treated for either 1 h with 100 μM sodium arsenite (ARS) or 10 min at 45.5°C became thermotolerant to a test heat treatment at 43°C administered 6 or 12 h later, respectively. After the test heating at 43°C for 1.5 h, the level of 26-kDa protein in the nucleus was decreased by 92% in nonthermotolerant cells, 78% in ARS-induced thermotolerant cells, and 3% in heat-induced thermotolerant cells. Inhibiting protein synthesis with cycloheximide (CHM, 10 μg/ml) after ARS treatment eliminated thermotolerance to 43°C and delayed restoration of the 26-kDa protein in the nucleus. In contrast, CHM neither prevented the development of thermotolerance nor inhibited the restoration of the 26-kDa protein in heat-induced thermotolerant cells. However, when cells were exposed to cold (4°C), immediately after initial heating, restoration of the 26-kDa protein and development of thermotolerance did not occur. These results demonstrate a good correlation between the restoration and/or the presence of this 26-kDa protein and the development of protein synthesis-independent thermotolerance.

This content is only available as a PDF.
You do not currently have access to this content.