The effects of viral or activated cellular oncogenes on sensitivity to γ rays, ultraviolet light, and heat shock were examined in SHOK (Syrian hamster Osaka-Kanazawa) cells and their transfectants. Resistance to γ rays was conferred by the introduction of v-mos or c-cot genes, which coded serine/threonine kinase. Cells transfected with v-mos and c-cot genes increased their resistance to ultraviolet light and heat shock compared to their parent cells (SHOK cells). Of the activated ras genes, the N-ras gene developed a SHOK cell phenotype resistant to γ rays and ultraviolet light. The Ha-ras gene produced SHOK cells resistant to ultraviolet light and heat shock, while introduction of the Ki-ras gene did not affect sensitivity. The v-erbB gene was found to be involved in the development of resistance to heat shock. Transfection with neo, c-myc, and v-fgr genes had little or no effect on cell survival. The karyotypes of SHOK cells and oncogene-containing cells were compared. No alterations were seen after the introduction of a foreign gene. Using cell cycle analysis, we found no apparent difference between SHOK cells and their transfectants. These results suggest that activation of serine/threonine kinase may be involved in common processes occurring after γ-ray, ultraviolet-light, and heat-shock treatment, and that each oncogene may have a different effect on the development of a resistant phenotype.
Skip Nav Destination
Close
Article navigation
February 1992
Research Article|
February 01 1992
Differences in Effects of Oncogenes on Resistance to γ Rays, Ultraviolet Light, and Heat Shock
Radiat Res (1992) 129 (2): 157–162.
Citation
Keiji Suzuki, Masami Watanabe, Jun Miyoshi; Differences in Effects of Oncogenes on Resistance to γ Rays, Ultraviolet Light, and Heat Shock. Radiat Res 1 February 1992; 129 (2): 157–162. doi: https://doi.org/10.2307/3578152
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr