The product yields in X-irradiated aqueous solutions of glycylglycine (0.05 M and 1.0 M) were measured under deoxygenated conditions. Comparison was made between the results obtained from X- and60 Co γ-irradiated glycylglycine solutions reported by Garrison, Sokol, and Bennett-Corniea (Radiat. Res. 53, 376-384, 1973). The mechanisms proposed by Garrison et al. were tested by evaluating the stoichiometric relationships. The two intermediate radicals, deamination and H-abstraction radicals, were produced in the initial interactions of glycylglycine with reactive species (<tex-math>$e_{{\rm aq}}^{-}$</tex-math>, OH, H) formed in H2 O. Although the difference was fairly large at 0.05 M, the production of deamination radicals agreed well with the consumption of the radicals at 1.0 M. The production and the consumption of H-abstraction radicals were within the estimated experimental error in dilute solutions. Among all the products only the G value of aspartic acid decreased with increasing concentration of glycylglycine. This could be attributed to the fact that more acetylglycine is formed at the expense of aspartic acid at 1.0 M than at 0.05 M glycylglycine solutions. Competitive reactions involved with deamination radicals under conditions of homogeneously distributed reactants are discussed to elucidate the radiation chemistry of glycylglycine.
Skip Nav Destination
Close
Article navigation
March 1992
Research Article|
March 01 1992
Measurement of Products from X-Irradiated Glycylglycine in Oxygen-Free Aqueous Solutions
Radiat Res (1992) 129 (3): 258–264.
Citation
Hiroko Yoshida, James E. Turner, Wesley E. Bolch, K. Bruce Jacobson, Warren M. Garrison; Measurement of Products from X-Irradiated Glycylglycine in Oxygen-Free Aqueous Solutions. Radiat Res 1 March 1992; 129 (3): 258–264. doi: https://doi.org/10.2307/3578024
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner