Cells from ataxia-telangiectasia (AT) patients are hypersensitive to the lethal effects of ionizing radiation. To assess radiation mutagenesis in these cells, the SV40-based shuttle vector, pZ189, was used to analyze γ-ray-induced mutations following the plasmid's replication in AT lymphoblasts. Progenies from the AT line GM2783 exposed to 50 Gy showed a mutation frequency of 7.6× 10-3, 63-fold over background; surviving plasmids were 3.4% of control. Both values were essentially the same as those of irradiated plasmids replicated in a normal lymphoblast line, GM606. In addition, pZ189 exposed to 25 Gy of γ radiation and replicated in another normal lymphoblast line and in cells of two additional AT lymphoblast lines showed similar mutation frequencies and percentages of surviving plasmids. Qualitative comparison of plasmid mutations from AT and normal cells showed no significant differences, indicating that the damaged DNA was repaired with similar fidelity in AT and normal cells. These studies suggest that there is no correlation between the enhanced sensitivity of AT cells to killing by ionizing radiation and γ-radiation-induced mutagenesis of plasmid DNA processed in these cells.
Skip Nav Destination
Close
Article navigation
June 1992
Research Article|
June 01 1992
Mutation Spectrum in γ-Irradiated Shuttle Vector Replicated in Ataxia- Telangiectasia Lymphoblasts
Radiat Res (1992) 130 (3): 331–339.
Citation
Matthew O. Sikpi, Michael L. Freedman, Sarah M. Dry, Alan G. Lurie; Mutation Spectrum in γ-Irradiated Shuttle Vector Replicated in Ataxia- Telangiectasia Lymphoblasts. Radiat Res 1 June 1992; 130 (3): 331–339. doi: https://doi.org/10.2307/3578378
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr