The discrete-ordinates transport computer code DORT has been used to develop a two-dimensional cylindrical phantom model for use as a tool to assess beam design and dose distributions for boron neutron capture therapy. The model uses an S8 approximation for angular fluxes and a P3 Legendre approximation for scattering cross sections. A one-dimensional discrete-ordinates model utilizing the computer code ANISN was used to validate the energy-group structure used in the two-dimensional calculations. In the two-dimensional model the effects of varying basic parameters such as aperture width, neutron source energy, and tissue composition have been studied. Identical results were obtained when comparing narrow beam calculations to fine-mesh higher-order <tex-math>$S_{{\rm n}}$</tex-math> treatments (up to <tex-math>$S_{32}$</tex-math>), and with P5 cross sections. It is shown that, when the correct assessment volume is used, narrow beams will give little or no advantage for therapy even with an optimum-energy ideal neutron beam.
Skip Nav Destination
Close
Article navigation
September 1992
Research Article|
September 01 1992
Assessment of Ideal Neutron Beams for Neutron Capture Therapy
Radiat Res (1992) 131 (3): 235–242.
Citation
G. J. Storr; Assessment of Ideal Neutron Beams for Neutron Capture Therapy. Radiat Res 1 September 1992; 131 (3): 235–242. doi: https://doi.org/10.2307/3578411
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr