Radiation injury, a major hazard of central nervous system (CNS) radiotherapy, was investigated using sequential studies with positron emission tomography (PET) and magnetic resonance imaging (MRI) in beagle dogs with both helium and neon-ion hemibrain irradiation. All dogs receiving 7.5-11 Gy of neon showed no signs of radiation injury to 3 years after irradiation. Dogs receiving ≥13 Gy neon or helium succumbed to radiation necrosis and died 21-32 weeks after irradiation. The findings of imaging studies for all dogs who succumbed to radiation necrosis were normal until 3-6 weeks before death. Sequential studies were performed using 0.5 T MRI spin-echo and inversion recovery imaging sequences, and high-resolution (2-3 mm) PET with${}^{18}{\rm F}$ deoxyglucose and${}^{82}{\rm Rb}$. The same axial slices (within 1-2 mm) were imaged repeatedly (weekly) after irradiation until death. The earliest CNS changes were seen as decreased metabolic activity in the cortex of the irradiated hemisphere with PET or an increase in signal intensity in the periventricular white matter on$T_{2}\text{-weighted}$ spin-echo imaging on MRI. From the time this increase in signal intensity was first observed, T1 and T2 values increased steadily in both the gray and white matter until death. The changes in white matter were consistently greater than those in gray matter. The results of PET, MRI, and histopathological examinations support the theory that both cellular and vascular mechanisms are involved in radiation necrosis.
Skip Nav Destination
Close
Article navigation
April 1993
Research Article|
April 01 1993
A Study of Radiation Necrosis and Edema in the Canine Brain Using Positron Emission Tomography and Magnetic Resonance Imaging
Radiat Res (1993) 134 (1): 43–53.
Citation
Kathleen M. Brennan, Mark S. Roos, Thomas F. Budinger, Robert J. Higgins, Sam T. S. Wong, Kay S. Bristol; A Study of Radiation Necrosis and Edema in the Canine Brain Using Positron Emission Tomography and Magnetic Resonance Imaging. Radiat Res 1 April 1993; 134 (1): 43–53. doi: https://doi.org/10.2307/3578500
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner