A DNA double-strand break (DSB) repair-deficient CHO cell line, xrs-5, was used to evaluate the effect of hypertonic treatment on the radiation yield of interphase chromosome breaks, as visualized by means of premature chromosome condensation (PCC). For this purpose, interphase chromosome breaks were measured in plateau-phase G1 cells after exposure to 10 Gy X rays using either the standard protocol for PCC induction or a revised protocol that includes a brief (20 min) treatment in hypertonic medium (500 mM NaCl) during chromosome condensation. Experiments at the chromosome level were complemented by experiments at the DNA and the cellular level performed under similar postirradiation conditions. The results obtained were compared to those reported previously for CHO cells. Radiation yields of interphase chromosome breaks, as measured using standard protocols for PCC induction, were higher in xrs-5 than in CHO cells. However, the yields became similar between the two cell lines when a 20-min incubation in hypertonic medium was introduced immediately after fusion with mitotic cells. This equalization was due to the fact that incubation in hypertonic medium did not affect the radiation yield of interphase chromosome breaks in xrs-5 cells but increased it in CHO cells to levels similar to those measured in xrs-5 cells. This result suggests that xrs-5 cells constitutively express as interphase chromosome breaks a subset of DSBs which in repair-proficient CHO cells requires incubation in hypertonic medium for transformation to interphase chromosome breaks. Rejoining of DSBs, when measured in isotonic medium, was incomplete in xrs-5 cells compared to CHO cells. Rejoining of DSBs normally repaired in xrs-5 cells was completely inhibited during treatment in hypertonic medium. Postirradiation treatment in hypertonic medium affected the survival of xrs-5 cells only modestly, suggesting that the sector of PLD (β-PLD) which required treatment in hypertonic medium for fixation in repair-proficient CHO cells is fixed constitutively in xrs-5 cells. These results are in agreement with a model developed to interpret results obtained in similar experiments with CHO cells (Iliakis et al., Radiat. Res 135, 160-170, 1993). The model postulates that potentiation in CHO cell killing induced by hypertonic treatment is caused by the transformation of a subset of fast-repairing DSBs to irreparable interphase chromosome breaks and assumes that this transformation is equivalent to fixation of β-PLD. We propose that in xrs-5 cells the same subset of DSBs is constitutively expressed as interphase chromosome breaks due to either the deficiency of these cells to repair DSBs or their altered chromatin structure. As a result, treatment in hypertonic medium does not significantly affect the yield of interphase chromosome breaks, the number of residual chromosome breaks measured after 10 h of repair, or the survival of irradiated cells, despite the fact that it inhibits the rejoining of repairable DSBs.
Skip Nav Destination
Article navigation
August 1993
Research Article|
August 01 1993
Hypertonic Treatment Does Not Affect the Radiation Yield of Interphase Chromosome Breaks in DNA Double-Strand Break Repair-Deficient xrs-5 Cells
Radiat Res (1993) 135 (2): 171–177.
Citation
Ryuichi Okayasu, John Varlotto, George Iliakis; Hypertonic Treatment Does Not Affect the Radiation Yield of Interphase Chromosome Breaks in DNA Double-Strand Break Repair-Deficient xrs-5 Cells. Radiat Res 1 August 1993; 135 (2): 171–177. doi: https://doi.org/10.2307/3578292
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Dosimetry: Was and Is an Absolute Requirement for Quality Radiation Research
Daniel Johnson, H. Harold Li, Bruce F. Kimler
Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases
Kotaro Ozasa, Yukiko Shimizu, Akihiko Suyama, Fumiyoshi Kasagi, Midori Soda, Eric J. Grant, Ritsu Sakata, Hiromi Sugiyama, Kazunori Kodama
Long-Term Effects of the Rain Exposure Shortly after the Atomic Bombings in Hiroshima and Nagasaki
Ritsu Sakata, Eric J. Grant, Kyoji Furukawa, Munechika Misumi, Harry Cullings, Kotaro Ozasa, Roy E. Shore
Calculations of Mean Quality Factors and Their Implications for Organ-specific Relative Biological Effectiveness (RBE) in Analysis of Radiation-related Risk in the Atomic Bomb Survivors
Shota Shimizu, Tatsuhiko Sato, Sachiyo Funamoto, Richard Sposto, Harry M. Cullings, Akira Endo, Stephen D. Egbert, Michiaki Kai
Hepatic Stellate Cell-mediated Increase in CCL5 Chemokine Expression after X-ray Irradiation Determined In Vitro and In Vivo
Masataka Taga, Kengo Yoshida, Shiho Yano, Keiko Takahashi, Seishi Kyoizumi, Megumi Sasatani, Keiji Suzuki, Tomohiro Ogawa, Yoichiro Kusunoki, Tatsuaki Tsuruyama