The acute and long-term effects of total-body X irradiation (TBI) on early erythroid progenitors, burst-forming units (BFU-E), in the bone marrow of beagles were studied for midline tissue doses of 1.6 and 2.4 Gy. After both radiation doses the initial reduction in the concentration of BFU-E was greater than that found for the granulocyte-macrophage progenitor cells (GM-CFC) and thus was in general agreement with the higher in vitro radiosensitivity of BFU-E compared to GM-CFC. After TBI with 1.6 Gy the GM-CFC and BFU-E returned to their normal levels within 2-4 weeks without showing long-term radiation effects. In contrast, after TBI with 2.4 Gy the concentrations of GM-CFC and BFU-E remained below the pretreatment levels up to 1 year after exposure. For a given midline tissue dose, the extent of the long-term effect of radiation on the BFU-E in a certain bone marrow site seems to be dependent on the local radiation dose in the respective bone marrow space. The minor radiation effects observed in the erythrocyte concentration in the peripheral blood, the hematocrit, and the hemoglobin concentration point to the enormous compensatory capacity of the more mature erythropoietic transit population to increase the proliferative capacity upon demand.
Skip Nav Destination
Close
Article navigation
September 1993
Research Article|
September 01 1993
Effects of Total-Body Irradiation on Bone Marrow Erythroid Burst-Forming Units (BFU-E) and Hemopoietic Regeneration in Dogs
Radiat Res (1993) 135 (3): 315–319.
Citation
Ludwika Kreja, Wolfram Weinsheimer, Christoph Selig, Wilhelm Nothdurft; Effects of Total-Body Irradiation on Bone Marrow Erythroid Burst-Forming Units (BFU-E) and Hemopoietic Regeneration in Dogs. Radiat Res 1 September 1993; 135 (3): 315–319. doi: https://doi.org/10.2307/3578870
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr