The response of cultured bovine aortic endothelial (BAE) cells after exposure to α-particle radiation from chelated212 Bi has been evaluated. The results suggest that even relatively high doses of α-particle radiation from212 Bi (20-72 Gy) cause only minor acute changes in the morphology of BAE cells (light and electron microscopy) under conditions of confluent monolayer growth. Significant morphological changes can be detected in cells that detach from the monolayer, though it is unclear whether these changes represent a genuine response to irradiation or reflect the causes or effects of monolayer detachment with the consequent loss of intercellular biochemical communication. After α-particle irradiation (20-40 Gy) angiotensin-converting-enzyme activity was not detectable in the monolayer culture medium but was significantly decreased within the cell monolayer. Neutral-elution-assay data demonstrated that DNA double-strand-break (DSB) damage occurred in these cells and that about 35% of the DSBs were repairable.
Skip Nav Destination
Article navigation
December 1993
Research Article|
December 01 1993
Morphological, Biochemical, and Molecular Changes in Endothelial Cells after Alpha-Particle Irradiation
Radiat Res (1993) 136 (3): 373–381.
Citation
Michael T. Speidel, Barton Holmquist, Amin I. Kassis, John L. Humm, Robert M. Berman, Robert W. Atcher, John J. Hines, Roger M. Macklis; Morphological, Biochemical, and Molecular Changes in Endothelial Cells after Alpha-Particle Irradiation. Radiat Res 1 December 1993; 136 (3): 373–381. doi: https://doi.org/10.2307/3578550
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Monte Carlo Simulation of SARS-CoV-2 Radiation-Induced Inactivation for Vaccine Development
Ziad Francis, Sebastien Incerti, Sara A. Zein, Nathanael Lampe, Carlos A. Guzman, Marco Durante
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr