In this study, we have shown that steady-state levels of glucose-regulated 78 kDa (GRP78) protein and messenger RNA increase during a 5-h exposure to 0.02% oxygen. This increase in GRP78 protein and mRNA induced by hypoxia can be abolished by a 1-h pretreatment of cells before hypoxia with the protein kinase C (PKC) inhibitors staurosporine and H7 at concentrations at which the drugs themselves do not cause cytotoxicity. Although all studies using protein kinase inhibitors must be interpreted with caution, staurosporine and H7 have been shown to be potent inhibitors of PKC activity, suggesting a role for PKC in mediating the transcriptional regulation of GRP78 by hypoxia. Further support for PKC in regulating GRP78 gene expression by hypoxia stems from gel-mobility shift studies in mixtures of nuclear extracts from aerobic or hypoxic cells with a 36 bp region of the GRP78 promoter (-170 to -135). Binding of this factor could be inhibited by pretreating cells with the PKC inhibitor staurosporine before hypoxia or activated by treating cells with the PKC-activating phorbol ester TPA. These data suggest that activation of this hypoxia-responsive factor is sensitive to oxygen levels and seems to be mediated through a PKC signal transduction pathway.
Skip Nav Destination
Close
Article navigation
1 April 1994
Research Article|
April 01 1994
The Regulation of GRP78 and Messenger RNA Levels by Hypoxia Is Modulated by Protein Kinase C Activators and Inhibitors
Radiat Res (1994) 138 (1s): S60–S63.
Citation
Albert C. Koong, Elizabeth A. Auger, Eunice Y. Chen, Amato J. Giaccia; The Regulation of GRP78 and Messenger RNA Levels by Hypoxia Is Modulated by Protein Kinase C Activators and Inhibitors. Radiat Res 1 April 1994; 138 (1s): S60–S63. doi: https://doi.org/10.2307/3578763
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner