When Chinese hamster V79 cells are exposed to various thiol compounds in phosphate-buffered saline (PBS), some compounds cause toxicity (loss of colony formation), although the dependence on drug concentration and the magnitude of the cell killing vary between the different thiols. For example: dithiothreitol (DTT) and WR-1065 cause a biphasic toxicity whereby cell killing occurs at about 0.2 to 1.0 mM thiol, but is not seen at higher or lower drug concentrations; N-acetylcysteine (NAC) is toxic only at concentrations ≥2 mM and shows no biphasic pattern; and glutathione (GSH) and penicillamine are only minimally toxic at all concentrations. The effect of the addition of <tex-math>$1\ \mu M\ {\rm Cu}^{2+}$</tex-math> to the thiol also depends on the particular thiol: e.g., Cu2+ increases cell killing in the biphasic pattern with WR-1065; it increases the toxicity of NAC only at high thiol concentrations; and it elicits a slight toxicity in the biphasic pattern by GSH and penicillamine. In all cases tested, if the thiol is toxic, the cell killing can be decreased or prevented by addition of catalase, consistent with the hypothesis that the toxicity is mediated through H2 O2 produced during the thiol oxidation. However, when the oxidation rates of the various thiols in PBS without and with Cu2+ were measured, the data did not show a simple correlation between the toxicity of the various thiols and their oxidation rates. The rate of the reaction of the various thiols with H2 O2 was also determined and showed a better, but still not good, correlation with toxicity. However, cell killing by the various thiols correlated better with the ratio between the half-lives for thiol oxidation and reaction of thiol with H2 O2 than with either reaction rate alone. This suggests that the toxicity pattern and magnitude of cell killing in V79 cells by various thiols depend on the interplay between the rate of thiol oxidation and the rate of reaction between the thiol and the H2 O2 produced in the thiol oxidation.
Skip Nav Destination
Close
Article navigation
July 1994
Research Article|
July 01 1994
Mechanisms for the Oxygen Radical-Mediated Toxicity of Various Thiol-Containing Compounds in Cultured Mammalian Cells
Radiat Res (1994) 139 (1): 15–23.
Citation
Kathryn D. Held, John E. Biaglow; Mechanisms for the Oxygen Radical-Mediated Toxicity of Various Thiol-Containing Compounds in Cultured Mammalian Cells. Radiat Res 1 July 1994; 139 (1): 15–23. doi: https://doi.org/10.2307/3578727
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner