Plateau-phase A549 cells exhibit a high capacity for repair of potentially lethal radiation damage (PLD) when allowed to recover in their own spent medium. Addition of either insulin or insulin-like growth factor-1 (IGF-1) to the spent medium 60 to 120 min before irradiation significantly inhibits PLD repair. The 9-h recovery factor (survival with holding/survival without holding) is reduced from 10.8 ± 0.7 to 3.4 ± 0.3 by insulin and to 3.0 ± 0.4 by IGF-1. Neither growth factor alters the cell age distribution of the plateau-phase cells, increases the rate of incorporation of 5-bromo-2′-deoxyuridine into DNA, or alters the extent of radiation-induced mitotic delay in cells subcultured immediately after irradiation. Both insulin and IGF-1 alter the kinetics for rejoining of DNA double-strand breaks (DSBs), slowing the fast component of rejoining significantly. However, these growth factors have no effect on the initial level of DSBs or on the percentage of residual unrejoined breaks at 120 min postirradiation. Both growth factors affect repair of lesions leading to dicentric, but not to acentric, chromosome aberrations significantly. In control cells (treated with phosphate-buffered saline, 90 min prior to irradiation), the half-time for disappearance of dicentrics was 4.1 h (3.4 to 5.1 h), and 47.1 ± 3.7% of the residual damage remained at 24 h postirradiation. Insulin and IGF-1 increased the half-time for disappearance of dicentrics to 5.2 h (3.9 to 7.7 h) and 5.7 h (5.5 to 5.9 h), respectively, and increased residual damage to 56.1 ± 5.9% and 60.8 ± 6.0%, respectively. Overall, these data show that insulin and IGF-1 inhibit PLD repair in A549 cells by mechanisms which are independent of changes in cell cycle parameters. The data suggest that the growth factors act by inducing changes in chromatin conformation which promote misrepair of radiation-damaged DNA.
Skip Nav Destination
Close
Article navigation
August 1995
Research Article|
August 01 1995
Insulin and Insulin-Like Growth Factor-1 (IGF-1) Inhibit Repair of Potentially Lethal Radiation Damage and Chromosome Aberrations and Alter DNA Repair Kinetics in Plateau-Phase A549 Cells
Radiat Res (1995) 143 (2): 165–174.
Citation
Vikram R. Jayanth, Charles A. Belfi, Alan R. Swick, Marie E. Varnes; Insulin and Insulin-Like Growth Factor-1 (IGF-1) Inhibit Repair of Potentially Lethal Radiation Damage and Chromosome Aberrations and Alter DNA Repair Kinetics in Plateau-Phase A549 Cells. Radiat Res 1 August 1995; 143 (2): 165–174. doi: https://doi.org/10.2307/3579153
Download citation file:
Close
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your InstitutionCiting articles via
Commonalities Between COVID-19 and Radiation Injury
Carmen I. Rios, David R. Cassatt, Brynn A. Hollingsworth, Merriline M. Satyamitra, Yeabsera S. Tadesse, Lanyn P. Taliaferro, Thomas A. Winters, Andrea L. DiCarlo
Low-Dose Radiation Therapy (LDRT) for COVID-19: Benefits or Risks?
Pataje G. Prasanna, Gayle E. Woloschak, Andrea L. DiCarlo, Jeffrey C. Buchsbaum, Dörthe Schaue, Arnab Chakravarti, Francis A. Cucinotta, Silvia C. Formenti, Chandan Guha, Dale J. Hu, Mohammad K. Khan, David G. Kirsch, Sunil Krishnan, Wolfgang W. Leitner, Brian Marples, William McBride, Minesh P. Mehta, Shahin Rafii, Elad Sharon, Julie M. Sullivan, Ralph R. Weichselbaum, Mansoor M. Ahmed, Bhadrasain Vikram, C. Norman Coleman, Kathryn D. Held
Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone, II, Nina A. Mayr
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner